Neurofibromatosis type 1 is an autosomal dominantly inherited tumor predisposition syndrome, in which inactivating mutations in the neurofibromatosis type 1 gene (NF1) lead to a prolonged activation of the signaling via the RAS/RAF/MAPK pathway leading to loss of growth control and increased cellular proliferation. We report a case of a 78-year-old man, a carrier of the germline NF1 Ala1224Gly/c.3671 C>G mutation, with ASXL1, ZRSR2 and TET2 mutation-positive blastic plasmacytoid dendritic cell neoplasm (BPDCN). Consistent with previously reported data on the role of the NF1 mutations in the pathogenesis of dendritic cell neoplasms, we suggest that the NF1 germline mutation may also increase the risk of BPDCN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12185-019-02642-w | DOI Listing |
Front Biosci (Landmark Ed)
December 2024
Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.
Background: Spatial-temporal control of mRNA translation in dendrites is important for synaptic plasticity. In response to pre-synaptic stimuli, local mRNA translation can be rapidly triggered near stimulated synapses to supply the necessary proteins for synapse maturation or elimination, and 3' untranslated regions (UTRs) are responsible for proper localization of mRNAs in dendrites. Although is a robust technique for analyzing RNA localization in fixed neurons, live-cell imaging of RNA dynamics remains challenging.
View Article and Find Full Text PDFOncol Res
December 2024
Department of Biology, College of Science, Sultan Qaboos University, Muscat, 123, Oman.
Nanotechnology in cancer therapy has significantly advanced treatment precision, effectiveness, and safety, improving patient outcomes and personalized care. Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells, precisely sensing the tumor microenvironment (TME) and sparing normal cells. These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation, and they can also overcome therapy resistance and deliver multiple drugs simultaneously.
View Article and Find Full Text PDFFront Immunol
December 2024
Myeloid Therapeutics, Inc., Cambridge, MA, United States.
Introduction: The approval of chimeric antigen receptor (CAR) T cell therapies for the treatment of B cell malignancies has fueled the development of numerous cell therapies. However, these cell therapies are complex and costly, and unlike in hematological malignancies, outcomes with most T cell therapies in solid tumors have been disappointing. Here, we present a novel approach to directly program myeloid cells by administering novel TROP2 CAR mRNA encapsulated in lipid nanoparticles (LNPs).
View Article and Find Full Text PDFFront Immunol
December 2024
School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Background: Thyroid-associated orbitopathy (TAO) is an autoimmune inflammatory disorder of the orbital adipose tissue, primarily causing oxidative stress injury and tissue remodeling in the orbital connective tissue. Ferroptosis is a form of programmed cell death driven by the accumulation of reactive oxygen species (ROS), iron metabolism disorder, and lipid peroxidation. This study aims to identify and validate the optimal feature genes (OFGs) of ferroptosis with diagnostic and therapeutic potential in TAO orbital adipose tissue through bioinformatics analysis and to assess their correlation with disease-related immune cell infiltration.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
Striatum, the input stage of the basal ganglia, is important for sensory-motor integration, initiation and selection of behavior, as well as reward learning. Striatum receives glutamatergic inputs from mainly cortex and thalamus. In rodents, the striatal projection neurons (SPNs), giving rise to the direct and the indirect pathway (dSPNs and iSPNs, respectively), account for 95% of the neurons, and the remaining 5% are GABAergic and cholinergic interneurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!