Purpose: 2D digital subtraction angiography (DSA) has become an important technique for interventional neuroradiology tasks, such as detection and subsequent treatment of aneurysms. In order to provide high-quality DSA images, usually undiluted contrast agent and a high X-ray dose are used. The iodinated contrast agent puts a burden on the patients' kidneys while the use of high-dose X-rays expose both patients and medical staff to a considerable amount of radiation. Unfortunately, reducing either the X-ray dose or the contrast agent concentration usually results in a sacrifice of image quality.

Materials And Methods: To denoise a frame, the proposed spatiotemporal denoising method utilizes the low-rank nature of a spatially aligned temporal sequence where variation is introduced by the flow of contrast agent through a vessel tree of interest. That is, a constrained weighted rank-1 approximation of the stack comprising the frame to be denoised and its temporal neighbors is computed where the weights are used to prevent the contribution of non-similar pixels toward the low-rank approximation. The method has been evaluated using a vascular flow phantom emulating cranial arteries into which contrast agent can be manually injected (Vascular Simulations Replicator, Vascular Simulations, Stony Brook NY, USA). For the evaluation, image sequences acquired at different dose levels as well as different contrast agent concentrations have been used.

Results: Qualitative and quantitative analyses have shown that with the proposed approach, the dose and the concentration of the contrast agent could both be reduced by about 75%, while maintaining the required image quality. Most importantly, it has been observed that the DSA images obtained using the proposed method have the closest resemblance to typical DSA images, i.e., they preserve the typical image characteristics best.

Conclusion: Using the proposed denoising approach, it is possible to improve the image quality of low-dose DSA images. This improvement could enable both a reduction in contrast agent and radiation dose when acquiring DSA images, thereby benefiting patients as well as clinicians. Since the resulting images are free from artifacts and as the inherent characteristics of the images are also preserved, the proposed method seems to be well suited for clinical images as well.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-019-01968-4DOI Listing

Publication Analysis

Top Keywords

contrast agent
32
dsa images
20
images
8
contrast
8
agent
8
x-ray dose
8
vascular simulations
8
image quality
8
proposed method
8
dsa
6

Similar Publications

The significance of endogenous immune surveillance in acute lymphoblastic leukemia (ALL) remains controversial. Using clinical B-ALL samples and a novel mouse model, we show that neoantigen-specific CD4+ T cells are induced to adopt type-1 regulatory (Tr1) function in the leukemia microenvironment. Tr1s then inhibit cytotoxic CD8+ T cells, preventing effective leukemia clearance.

View Article and Find Full Text PDF

Evaluation of glomerular filtration rate estimation through plasma clearance of iohexol in seagulls (Larus michahellis).

BMC Vet Res

January 2025

Department of Veterinary Sciences, Veterinary Teaching Hospital "Mario Modenato", University of Pisa, via Livornese snc, San Piero a Grado, Pisa, Italy.

Background: Current endogenous indicators utilised in avian medicine are not sensitive enough to detect renal disease in its early stages. Alternative markers ought to be examined as a result. The aim is to investigate the accuracy of limited-sampling models for glomerular filtration rate (GFR) in adult seagulls using plasma clearance of iohexol (IOX).

View Article and Find Full Text PDF

The characterization of tunnel wash water (TWW) from 12 Norwegian tunnels showed very high concentrations of total suspended solids (TSS), metals, and polycyclic aromatic hydrocarbons (PAHs). Iron (Fe), aluminum (Al), and manganese (Mn) were mainly particle-associated. They are efficiently removed by sedimentation, while the dissolved concentrations of toxic metals like Cu, Zn, and As did not change.

View Article and Find Full Text PDF

The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have attracted significant interest in recent years owing to their unique physicochemical properties, including antimicrobial reduction capabilities, photocatalytic activity, self-cleaning features, superhydrophobicity, and electrical conductivity. Their characteristics render them highly advantageous for various textile, electronics, food and agriculture, water treatment, and biomedical applications. This detailed analysis explores the recent benefits and drawbacks of various synthesis methods, immobilization techniques, and characterization of AgNPs while emphasizing novel strategies that improve their functionality across different substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!