Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There are a vast range of diseases and disorders that are neurocristopathic in origin, including Hirschsprung's disease, pheochromocytoma, familial dysautonomia, craniofacial disorders, and melanomas. Having a source of human neural crest cells is highly valuable for investigating potential treatments for such diseases. This chapter describes a robust and well-characterized protocol for deriving neural crest from human pluripotent stem cells (hPSCs), which can then be differentiated to neuronal and non-neuronal lineages. The protocol is adapted to suit hPSC maintenance as a monolayer bulk culture or as manual-passaged colonies, which makes it widely applicable to researchers that may use different systems for hPSC maintenance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9412-0_3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!