A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Melatonin ameliorates endoplasmic reticulum stress in N2a neuroblastoma cell hypoxia-reoxygenation injury by activating the AMPK-Pak2 pathway. | LitMetric

AI Article Synopsis

  • Endoplasmic reticulum (ER) stress is a big problem that can happen in the brain after an injury when blood flow is restored.
  • In this study, scientists looked at a protein called Pak2 that helps protect cells from ER stress and how melatonin, a natural compound, can help support Pak2 levels.
  • The results showed that when Pak2 levels drop due to injury, it leads to cell death, but melatonin can help restore Pak2 and protect the cells, suggesting that taking melatonin could help reduce damage in similar situations.

Article Abstract

Endoplasmic reticulum (ER) stress has been identified as a primary factor involved in brain ischemia-reperfusion injury progression. p21-activated kinase 2 (Pak2) is a novel ER function regulator. The aim of our study is to explore the influence of Pak2 on ER stress and determine whether melatonin attenuates ER stress-mediated cell death by modulating Pak2 expression in vitro using N2a cells. The results of our study demonstrated that hypoxia-reoxygenation (HR) injury repressed the levels of Pak2, an effect that was accompanied by activation of ER stress. In addition, decreased Pak2 was associated with oxidative stress, calcium overload, and caspase-12-mediated apoptosis activation in HR-treated N2a cells. Interestingly, melatonin treatment reversed the decreased Pak2 expression under HR stress. Knockdown of Pak2 abolished the protective effects of melatonin on ER stress, oxidative stress, and caspase-12-related N2a cells death. Additionally, we found that Pak2 was regulated by melatonin via the AMPK pathway; inhibition of AMPK prevented melatonin-mediated Pak2 upregulation, a result that was accompanied by an increase in N2a cell death. Altogether, these results identify the AMPK-Pak2 axis as a new signaling pathway responsible for ER stress and N2a cell viability under HR injury. Modulation of the AMPK-Pak2 cascade via supplementation of melatonin might be considered an effective approach to attenuate reperfusion-mediated N2a cell damage via repression of ER stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527732PMC
http://dx.doi.org/10.1007/s12192-019-00994-0DOI Listing

Publication Analysis

Top Keywords

n2a cells
12
n2a cell
12
stress
10
pak2
9
endoplasmic reticulum
8
reticulum stress
8
stress n2a
8
hypoxia-reoxygenation injury
8
cell death
8
pak2 expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!