Force feedback from Campaniform sensilla (CS) on insect limbs helps to adapt motor outputs to environmental conditions, but we are only beginning to reveal the neural control mechanisms that mediate these influences. We studied CS groups that affect control of the thoraco-coxal joint in the stick insect Carausius morosus by applying horizontal and vertical forces to the leg stump. Motor effects of ablation of CS groups were evaluated by recording extracellularly from protractor (ProCx) and retractor (RetCx) nerves. Extracellular recordings showed that the effects of stimulating the sensilla were consistent with their broad ranges of directional sensitivity: for example, RetCx firing in response to posterior bending could be reduced by ablating several groups of trochanteral CS, whereas ablation of tibial and femoral sensilla had little effect. In contrast, ProCx motor neuron activity upon anteriorly directed stimuli was affected mainly by ablating a single CS group (G2). Dye fills of trochanteral, femoral and tibial CS groups with fluorescent dyes revealed a common projection pattern with little group specificity. These findings support the idea that the influences of CS feedback are determined by the activities of pre-motor interneurons, facilitating fast and task-dependent adaptation to changing environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00359-019-01334-4 | DOI Listing |
Curr Biol
February 2024
Biocenter Cologne, Institute of Zoology, Department of Animal Physiology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany. Electronic address:
Rhythmic locomotor activity, such as flying, swimming, or walking, results from an interplay between higher-order centers in the central nervous system, which initiate, maintain, and modify task-specific motor activity, downstream central pattern-generating neural circuits (CPGs) that can generate a default rhythmic motor output, and, finally, feedback from sense organs that modify basic motor activity toward functionality. In this context, CPGs provide phasic synaptic drive to motor neurons (MNs) and thereby support the generation of rhythmic activity for locomotion. We analyzed the synaptic drive that the leg MNs supplying the three main leg joints receive from CPGs in pharmacologically activated and deafferented preparations of the stick insect (Carausius morosus).
View Article and Find Full Text PDFJ Exp Biol
August 2019
University of Leicester, Department of Neuroscience, Psychology and Behaviour, University Road, Leicester LE1 7RH, UK
For aimed limb movements to remain functional, they must be adapted to developmental changes in body morphology and sensory-motor systems. Insects use their limbs to groom the body surface or to dislodge external stimuli, but they face the particular problem of adapting these movements to step-like changes in body morphology during metamorphosis or moulting. Locusts are hemimetabolous insects in which the imaginal moult to adulthood results in a sudden and dramatic allometric growth of the wings relative to the body and the legs.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
April 2019
Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany.
Force feedback from Campaniform sensilla (CS) on insect limbs helps to adapt motor outputs to environmental conditions, but we are only beginning to reveal the neural control mechanisms that mediate these influences. We studied CS groups that affect control of the thoraco-coxal joint in the stick insect Carausius morosus by applying horizontal and vertical forces to the leg stump. Motor effects of ablation of CS groups were evaluated by recording extracellularly from protractor (ProCx) and retractor (RetCx) nerves.
View Article and Find Full Text PDFJ Neurobiol
August 2003
Chamissostrasse 16, 70193 Stuttgart, Germany.
The influence of vibratory signals from the femoral chordotonal organ fCO on the activities of muscles and motoneurons in the three main leg joints of the stick insect leg, i.e., the thoraco-coxal (TC) joint, the coxa-trochanteral (CT) joint, and the femur-tibia (FT) joint, was investigated when the animal was in the active behavioral state.
View Article and Find Full Text PDFJ Neurophysiol
January 2001
Zoologisches Institut, Universität zu Köln, 50923 Cologne, Germany.
During walking, the six legs of a stick insect can be coordinated in different temporal sequences or gaits. Leg coordination in each gait is controlled and stabilized by coordinating mechanisms that affect the action of the segmental neuronal networks for walking pattern generation. At present, the motor program for single walking legs in the absence of movement-related coordinating intersegmental influences from the other legs is not known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!