A new time-integrated thermal desorption technique has been developed that can be used with selected ion flow tube mass spectrometry, TI-TD/SIFT-MS, for off-line quantitative analyses of VOCs accumulated onto sorbents. Using a slow desorption temperature ramp, the absolute amounts of desorbed compounds can be quantified in real time by SIFT-MS and constitutional isomers can be separated. To facilitate application of this technique to environmental atmospheric monitoring, method parameters were optimised for quantification of the three common atmospheric monoterpenes: β-pinene, R-limonene and 3-carene. Three sorbent types, Tenax TA, Tenax GR and Porapak Q, were tested under 26 different desorption conditions determined by the "design of experiment", DOE, systematic approach. The optimal combination of type of sorbent, bed length, sampling flow rate, sample volume and the initial desorption temperature was determined from the experimental results by ANOVA. It was found that Porapak Q exhibited better efficiency of sample collection and further extraction for total monoterpene concentration measurements. On the other hand, Tenax GR or TA enabled separation of all three monoterpenes. The results of this laboratory study were tested with the sample accumulated from a branch of a Pinus nigra tree. Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-019-01782-6 | DOI Listing |
Sci Rep
January 2025
Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Università di Bologna, Bologna, Italy.
Heterogeneous fault architecture affects crustal seismotectonics and fluid migration. When studying it, we commonly rely on static conceptual models that generally overlook the absolute time dimension of fault (re)activation. Heterogenous faults, however, represent the end-result of protracted, cumulative and intricate deformation histories.
View Article and Find Full Text PDFSurv Geophys
July 2023
Applied Physics Laboratory, University of Washington, Seattle, WA 98105 USA.
The global seasonal cycle of energy in Earth's climate system is quantified using observations and reanalyses. After removing long-term trends, net energy entering and exiting the climate system at the top of the atmosphere (TOA) should agree with the sum of energy entering and exiting the ocean, atmosphere, land, and ice over the course of an average year. Achieving such a balanced budget with observations has been challenging.
View Article and Find Full Text PDFFront Plant Sci
June 2024
Crop Science Group, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
Canopy temperature (CT) is often interpreted as representing leaf activity traits such as photosynthetic rates, gas exchange rates, or stomatal conductance. This interpretation is based on the observation that leaf activity traits correlate with transpiration which affects leaf temperature. Accordingly, CT measurements may provide a basis for high throughput assessments of the productivity of wheat canopies during early grain filling, which would allow distinguishing functional from dysfunctional stay-green.
View Article and Find Full Text PDFPhys Rev E
May 2023
Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7600, South Africa.
Linear diffusions are used to model a large number of stochastic processes in physics, including small mechanical and electrical systems perturbed by thermal noise, as well as Brownian particles controlled by electrical and optical forces. Here we use techniques from large deviation theory to study the statistics of time-integrated functionals of linear diffusions, considering three classes of functionals or observables relevant for nonequilibrium systems which involve linear or quadratic integrals of the state in time. For these, we derive exact results for the scaled cumulant generating function and the rate function, characterizing the fluctuations of observables in the long-time limit, and study in an exact way the set of paths or effective process that underlies these fluctuations.
View Article and Find Full Text PDFJ Environ Manage
July 2021
Universidad Nacional de Colombia-Sede Palmira-Facultad de Ingeniería y Administración. Carrera 32 No. 12-00, Chapinero, Vía Candelaria, Palmira, Colombia. Electronic address:
Life cycle assessment and kinetic modeling were used to elucidate the impact of thermal intensification (TI) on resource consumption and the techno-economic feasibility of a Fenton process at laboratory scale. Increasing temperature from 25 to 55 °C lowers treatment time (96.5%) and electricity use (67.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!