Background: It is a permanent challenge to differentiate small solid lung nodules. Massive data, extracted from medical image through radiomics analysis, may help early diagnosis of lung cancer. The aim of this study was to assess the usefulness of a quantitative radiomic model developed from baseline low-dose computed tomography (LDCT) screening for the purpose of predicting malignancy in small solid pulmonary nodules (SSPNs).

Methods: This retrospective study included malignant and benign SSPNs (6 to 15 mm) detected in baseline low-dose CT screening. The malignancy was confirmed pathologically, and benignity was confirmed by long term follow-up or pathological diagnosis. The non-contrast CT images were reconstructed with a lung kernel of a slice thickness of 1 mm and were processed to extract 385 quantitative radiomic features using Analysis-Kinetic software. A predictive model was established with the training set of 156 benign and 40 malignant nodules, and was tested with the validation set of 77 benign and 21 malignant nodules through the analysis of R square. The performance of the radiomic model in predicting malignancy was compared with that of the ACR Lung Imaging Reporting and Data System (ACR lung-RADS).

Results: In 294 cases of SSPNs, 61 lung cancers and 24 benign nodules were confirmed pathologically and the remaining 209 nodules were stable with long-term follow-up (4.1±0.9 years). Eleven non-redundant features, including 8 high-order texture features, were extracted from the training data set. The sensitivity and specificity of the prediction model in malignancy differentiation were 81.0% and 92.2% respectively. The accuracy was superior to ACR-lung RADS (89.8% 76.5%).

Conclusions: A radiomic model based on baseline low-dose CT screening for lung cancer can improve the accuracy in predicting malignancy of SSPNs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414768PMC
http://dx.doi.org/10.21037/qims.2019.02.02DOI Listing

Publication Analysis

Top Keywords

radiomic model
16
predicting malignancy
16
quantitative radiomic
12
small solid
12
low-dose screening
12
baseline low-dose
12
model predicting
8
malignancy small
8
solid pulmonary
8
pulmonary nodules
8

Similar Publications

To investigate the potential of an MRI-based radiomic model in distinguishing malignant prostate cancer (PCa) nodules from benign prostatic hyperplasia (BPH)-, as well as determining the incremental value of radiomic features to clinical variables, such as prostate-specific antigen (PSA) level and Prostate Imaging Reporting and Data System (PI-RADS) score. A restrospective analysis was performed on a total of 251 patients (training cohort, n = 119; internal validation cohort, n = 52; and external validation cohort, n = 80) with prostatic nodules who underwent biparametric MRI at two hospitals between January 2018 and December 2020. A total of 1130 radiomic features were extracted from each MRI sequence, including shape-based features, gray-level histogram-based features, texture features, and wavelet features.

View Article and Find Full Text PDF

Development and Validation of an AI-Based Multimodal Model for Pathological Staging of Gastric Cancer Using CT and Endoscopic Images.

Acad Radiol

January 2025

Guangxi Medical University, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China (D.H., X.W.). Electronic address:

Rationale And Objectives: Accurate preoperative pathological staging of gastric cancer is crucial for optimal treatment selection and improved patient outcomes. Traditional imaging methods such as CT and endoscopy have limitations in staging accuracy.

Methods: This retrospective study included 691 gastric cancer patients treated from March 2017 to March 2024.

View Article and Find Full Text PDF

Radiomics and Deep Learning Model for Benign and Malignant Soft Tissue Tumors Differentiation of Extremities and Trunk.

Acad Radiol

January 2025

Department of Radiology, Southeast University Zhongda Hospital, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China (M.Y., J.J.). Electronic address:

Rationale And Objectives: To develop radiomics and deep learning models for differentiating malignant and benign soft tissue tumors (STTs) preoperatively based on fat saturation T2-weighted imaging (FS-T2WI) of patients.

Materials And Methods: Data of 115 patients with STTs of extremities and trunk were collected from our hospital as the training set, and data of other 70 patients were collected from another center as the external validation set. Outlined Regions of interest included the intratumor and the peritumor region extending outward by 5 mm, then the corresponding radiomics features were extracted respectively.

View Article and Find Full Text PDF

An Automatic Deep-Radiomics Framework for Prostate Cancer Diagnosis and Stratification in Patients with Serum Prostate-Specific Antigen of 4.0-10.0 ng/mL: A Multicenter Retrospective Study.

Acad Radiol

January 2025

Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China (B.Z., F.M., X.S., S.L., Q.W.); Department of Urology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong 510080, China (Q.W.). Electronic address:

Rationale And Objectives: To develop an automatic deep-radiomics framework that diagnoses and stratifies prostate cancer in patients with prostate-specific antigen (PSA) levels between 4 and 10 ng/mL.

Materials And Methods: A total of 1124 patients with histological results and PSA levels between 4 and 10 ng/mL were enrolled from one public dataset and two local institutions. An nnUNet was trained for prostate masks, and a feature extraction module identified suspicious lesion masks.

View Article and Find Full Text PDF

Habitat radiomics based on CT images to predict survival and immune status in hepatocellular carcinoma, a multi-cohort validation study.

Transl Oncol

January 2025

Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China. Electronic address:

Background And Objective: Though several clinicopathological features are identified as prognostic indicators, potentially prognostic radiomic models are expected to preoperatively and noninvasively predict survival for HCC. Traditional radiomic models are lacking in a consideration for intratumoral regional heterogeneity. The study aimed to establish and validate the predictive power of multiple habitat radiomic models in predicting prognosis of hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!