A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and characterization of a new dolomite-based catalyst: application to the photocatalytic degradation of pentachlorophenol. | LitMetric

Development and characterization of a new dolomite-based catalyst: application to the photocatalytic degradation of pentachlorophenol.

Water Sci Technol

Laboratoire de Structure, Elaboration et Applications des Matériaux Moléculaires (S.E. A.2M.), Département de Génie des Procédés, Université de Mostaganem, 27000 Mostaganem, Algeria E-mail:

Published: February 2019

The development of new catalysts from abundant raw materials, generating attractive photocatalytic activity, constitutes a real challenge in the context of sustainable development concerns. In this setting, a dolomite was treated at 800 °C (D800) and then chemically modified by Ca(NO) (CaD800) using a simple procedure. The resulting materials were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy (EDS), solid state UV spectroscopy, and used as catalysts of pentachlorophenol (PCP) degradation in aqueous solutions under UV light irradiation. The treatment of dolomite at 800 °C enabled a full decarbonation of CaMg(CO), with formation of CaO, Ca(OH), and MgO. Additional CaO was generated after chemical treatment as revealed by EDS analysis; the Ca/Mg ratio increased from 1.29 (D800) to 1.44 for CaD800. This CaO in aqueous medium hydrates by giving Ca(OH). CaD800 was found to be the best photocatalyst with a PCP degradation rate of 95% after only 1 h of treatment, for a CaD800/D800 degradation rate constant ratio of 1.58. In this regard, we investigated the Fourier transform infrared spectra of CaD800, PCP, and CaD800 loaded with PCP after degradation. We thus evidenced the involvement of Ca(OH) in the PCP degradation process. Catalytic activity was discussed through the contribution of OH radicals and electrodonation.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2019.094DOI Listing

Publication Analysis

Top Keywords

pcp degradation
16
800 °c
8
degradation rate
8
degradation
6
cad800
5
pcp
5
development characterization
4
characterization dolomite-based
4
dolomite-based catalyst
4
catalyst application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!