Schistosomiasis is a water-based, infectious disease with high morbidity and significant economic burdens affecting >250 million people globally. Disease control has, with notable success, for decades focused on drug treatment of infected human populations, but a recent paradigm shift now entails moving from control to elimination. To achieve this ambitious goal, more sensitive diagnostic tools are needed to monitor progress toward transmission interruption in the environment, especially in low-intensity infection areas. We report on the development of an environmental DNA (eDNA)-based tool to efficiently detect DNA traces of the parasite directly in the aquatic environment, where the nonhuman part of the parasite life cycle occurs. This is a report of the successful detection of in freshwater samples by using aquatic eDNA. True eDNA was detected in as few as 10 cercariae per liter of water in laboratory experiments. The field applicability of the method was tested at known transmission sites in Kenya, where comparison of schistosome detection by conventional snail surveys (snail collection and cercariae shedding) with eDNA (water samples) showed 71% agreement between the methods. The eDNA method furthermore detected schistosome presence at two additional sites where snail shedding failed, demonstrating a higher sensitivity of eDNA sampling. We conclude that eDNA provides a promising tool to substantially improve the environmental surveillance of Given the proper method and guideline development, eDNA could become an essential future component of the schistosomiasis control tool box needed to achieve the goal of elimination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500138 | PMC |
http://dx.doi.org/10.1073/pnas.1815046116 | DOI Listing |
Nat Cell Biol
January 2025
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.
View Article and Find Full Text PDFImmunogenetics
January 2025
School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
Characterising functional diversity is a vital element to understanding a species' immune function, yet many immunogenetic studies in non-model organisms tend to focus on only one or two gene families such as the major histocompatibility complex (MHC) or toll-like receptors (TLR). Another interesting component of the eukaryotic innate immune system is the antimicrobial peptides (AMPs). The two major groups of mammalian AMPs are cathelicidins and defensins, with the former having undergone species-specific expansions in marsupials.
View Article and Find Full Text PDFZhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2025
Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, China.
Epigenetics is the link between the genome and environment, which can respond to physiological (such as age) or environmental factors (such as diet, stress, and pollution) and induce changes in epigenetic modifications (such as DNA methylation, non-coding RNA, and histone modifications). It can also serve as cellular memory transmitted from generation to generation. Sperm is highly responsive to such environmental changes and has unique epigenetic profiles.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada. Electronic address:
The occurrence of environmental hypoxia in freshwater and marine aquatic systems has increased over the last century and is predicted to further increase with climate change. As members of the largest extant vertebrate group, freshwater fishes, and to a much lesser extent marine fishes, are vulnerable to increased occurrence of hypoxia. This is important as fishes render important ecosystem services and have important cultural and economic roles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!