Toward a Fully Analytical Contact Resistance Expression in Organic Transistors.

Materials (Basel)

LPICM, Ecole Polytechnique, CNRS, 91128 Palaiseau, France.

Published: April 2019

Contact resistance is a major characteristic of organic transistors, and its importance has received renewed attention due to the recent revelation of mobility overestimation. In this article, we propose a method to describe the contact resistance as a closed-form compact equation of the materials, interfaces, and geometrical parameters. The proposed model allows us to quantitatively understand the correlation between charge-injection and transport properties, while providing a tool for performance prediction and optimization. This theory is applied to a set of experimentally fabricated devices to exemplify how to utilize the model in practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479995PMC
http://dx.doi.org/10.3390/ma12071169DOI Listing

Publication Analysis

Top Keywords

contact resistance
12
organic transistors
8
fully analytical
4
analytical contact
4
resistance expression
4
expression organic
4
transistors contact
4
resistance major
4
major characteristic
4
characteristic organic
4

Similar Publications

Tuberculosis (TB) is the leading cause of death from a single infectious agent. The burden is highest in some low- and middle-income countries. One-quarter of the world's population is estimated to have been infected with TB, which is the seedbed for progressing from TB infection to the deadly and contagious disease itself.

View Article and Find Full Text PDF

Constructing a green modifier by using glyoxal-urea resin and chitosan to obtain a modified soy protein adhesive with high bonding strength and excellent water resistance.

Int J Biol Macromol

December 2024

Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China. Electronic address:

The manufacturing of soy-based adhesives with high bonding strength, excellent water resistance, and exceptional environmental performance still faces difficulties. In this work, using glyoxal-urea (GU) resin, chitosan (CS), and soy protein isolate (SPI) as the primary raw materials in order to effectively mitigate the release of free formaldehyde commonly found in traditional wood-based panels. Obtaining an adhesive with high strength, excellent water resistance, and a stable cross-linking structure of GU/CS/SPI (CS represents different mass fractions of chitosan solution).

View Article and Find Full Text PDF

3D printing of continuous cotton thread reinforced poly (lactic acid).

Sci Rep

December 2024

Key Laboratory of Special Engineering Equipment Design and Intelligent Driving Technology, Guilin University of Aerospace Technology, Guilin, 541004, China.

This paper purposed to prepare poly (lactic acid)/continuous cotton thread (PLA /CCT) filaments by using prepreg method, and investigated the properties of PLA/CCT filament and their 3D printed composites. Firstly, a prepreg device was home-made to immerse CCT with PLA melts. The effects of the dragging speed and tensioning equipment on the quality of PLA/CCT filament was investigated.

View Article and Find Full Text PDF

Architecting highly hydratable and permeable dense Janus membrane for rapid and robust membrane distillation desalination.

Water Res

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China. Electronic address:

Dense Janus membranes (JMs) are potential candidates in hypersaline wastewater treatments for membrane distillation (MD). However, dense surface layers generally add obvious membrane mass transfer resistance, limiting its practical application. In this study, a novel dense JM was facilely developed by controlled interfacial polymerization utilizing a phosphonium functional monomer (THPC) on hydrophilic polyvinylidene fluoride (PVDF) substrate.

View Article and Find Full Text PDF

Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!