A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polycaprolactone/Amino-β-Cyclodextrin Inclusion Complex Prepared by an Electrospinning Technique. | LitMetric

Polycaprolactone/Amino-β-Cyclodextrin Inclusion Complex Prepared by an Electrospinning Technique.

Polymers (Basel)

Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro 450 Norte, Ciudad Juárez 32310, Mexico.

Published: November 2016

Electrospun scaffolds of neat poly-ε-caprolactone (PCL), poly-ε-caprolactone/β-cyclodextrin inclusion complex (PCL/β-CD) and poly-ε-caprolactone amino derivative inclusion complex (PCL/β-CD-NH₂) were prepared by the electrospinning technique. The obtained mats were analyzed by a theoretical model using the Hartree⁻Fock method with an STO-3G basis set, and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), differential scanning calorimetry (DSC), confocal-Raman spectroscopy, proton nuclear magnetic resonance (¹HNMR) and contact angle measure (CA). Different mixtures of solvents, such as dimethylformamide (DMF)-tetrahydrofuran (THF), dichlormethane (DCM)-dimethyl sulfoxide (DMSO) and 2,2,2-Trifluoroethanol (TFE), were tested in the fiber preparation. The results indicate that electrospun nanofibers have a pseudorotaxane structure and when it was prepared using a 2,2,2-Trifluoroethanol (TFE) as solvent, the nanofibers were electrospun well and, with the other solvents, fibers present defects such as molten fibers and bead-like defects into the fiber structure. This work provides insights into the design of PCL/β-CD-NH₂ based scaffolds that could have applications in the biomedical field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432087PMC
http://dx.doi.org/10.3390/polym8110395DOI Listing

Publication Analysis

Top Keywords

inclusion complex
12
prepared electrospinning
8
electrospinning technique
8
222-trifluoroethanol tfe
8
polycaprolactone/amino-β-cyclodextrin inclusion
4
complex prepared
4
technique electrospun
4
electrospun scaffolds
4
scaffolds neat
4
neat poly-ε-caprolactone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!