Syndiotactic polystyrene pellets were processed into powder form using mechanical (ball milling, rotor milling) and physicochemical (spray drying) techniques with the intention of using it as feed material for selective laser sintering. New materials are an important component in broadening the application window for selective laser sintering but must meet strict requirements to be used. Particles obtained were characterized in size and shape using SEM imaging, analyzed by software, and compared to the product obtained by conventional ball milling. Rotor milling and spray drying proved capable of making spherical powders, yet only rotor milling achieved particles with a mean diameter within the desired range of 45⁻97 µm. Subsequently, the obtained powders were examined for the effect each processing technique imparts on the intrinsic properties of the material. Differential scanning calorimetry analysis revealed amorphization for all methods and a reduction in crystallinity after processing, however, the reduction in crystallinity was acceptably low for the spray-dried and rotor-milled powders. Ball milling displayed an exceptional reduction in crystallinity, suggesting severe degradation. As a final test, the rotor-milled powder was subjected to single-layer test and displayed good coalescence and smooth morphology, albeit with a large amount of warpage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431981 | PMC |
http://dx.doi.org/10.3390/polym8110383 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Brown University, Department of Chemistry, UNITED STATES OF AMERICA.
Despite major progress in the investigation of boron cluster anions, direct experimental study of neutral boron clusters remains a significant challenge because of the difficulty in size selection. Here we report a size-specific study of the neutral B9 cluster using threshold photoionization with a tunable vacuum ultraviolet free electron laser. The ionization potential of B9 is measured to be 8.
View Article and Find Full Text PDFSci Rep
January 2025
Udmurt Federal Research Center of the Ural Branch of RAS, Baramzina str. 34, Izhevsk, 426067, Russia.
Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.
View Article and Find Full Text PDFSci Rep
January 2025
Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.
View Article and Find Full Text PDFSci Rep
January 2025
Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, c/Francisco Pintado Fe 26, Oviedo, 33011, Spain.
In addition to the inherent limitations of carbons to melt or flow, a vast majority of carbon precursors deforms during carbonisation, with stereolithography of thermoset resins being the preferred technology for 3D printing of carbons. An alternative is now presented with the possibility of using a melting-based technology, selective laser sintering (SLS), to fabricate 3D structures that withstand carbonisation. The key factor that makes this happen is whey powder, a natural, abundant and cheap by-product of the dairy industry.
View Article and Find Full Text PDFBone Res
January 2025
Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA.
The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!