Although the research of the self-assembly of tri-block copolymers has been carried out widely, little attention has been paid to study the mechanical properties and to establish its structure-property relation, which is of utmost significance for its practical applications. Here, we adopt molecular dynamics simulation to study the static and dynamic mechanical properties of the ABA tri-block copolymer, by systematically varying the morphology, the interaction strength between A-A blocks, the temperature, the dynamic shear amplitude and frequency. In our simulation, we set the self-assembled structure formed by A-blocks to be in the glassy state, with the B-blocks in the rubbery state. With the increase of the content of A-blocks, the spherical, cylindrical and lamellar domains are formed, respectively, exhibiting a gradual increase of the stress-strain behavior. During the self-assembly process, the stress-strain curve is as well enhanced. The increase of the interaction strength between A-A blocks improves the stress-strain behavior and reduces the dynamic hysteresis loss. Since the cylindrical domains are randomly dispersed, the stress-strain behavior exhibits the isotropic mechanical property; while for the lamellar domains, the mechanical property seems to be better along the direction perpendicular to than parallel to the lamellar direction. In addition, we observe that with the increase of the dynamic shear amplitude and frequency, the self-assembled domains become broken up, resulting in the decrease of the storage modulus and the increase of the hysteresis loss, which holds the same conclusion for the increase of the temperature. Our work provides some valuable guidance to tune the static and dynamic mechanical properties of ABA tri-block copolymer in the field of various applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432360 | PMC |
http://dx.doi.org/10.3390/polym8090335 | DOI Listing |
J Mol Model
December 2024
Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, Número 186, Colonia Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Código Postal 09310, Ciudad de Mexico, Mexico.
Context: Antioxidants are known to play a beneficial role in human health. Caffeic acid has been previously recognized as efficient in this context. However, such a capability can be enhanced through structural modification.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China.
Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of the FO membrane in terms of its mechanical strength and hydrophilic properties. Generally, the water flux () of polyisophenylbenzamide (PMIA) thin-film composite (TFC)-FO membranes is still inadequate for industrial applications.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
Triboelectric nanogenerators (TENGs) have garnered significant attention due to their high energy conversion efficiency and extensive application potential in energy harvesting and self-powered devices. Recent advancements in electrospun nanofibers, attributed to their outstanding mechanical properties and tailored surface characteristics, have meant that they can be used as a critical material for enhancing TENGs performance. This review provides a comprehensive overview of the developments in electrospun nanofiber-based TENGs.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.
Four distinct pore-filling anion exchange membranes (PFAEMs) were prepared, and their mechanical properties, ion conductivity, and performance in anion exchange membrane water electrolysis (AEMWE) were evaluated. The fabricated PFAEMs demonstrated exceptional tensile strength, which was approximately 14 times higher than that of the commercial membrane, despite being nearly half as thin. Ion conductivity measurements revealed that acrylamide-based membranes outperformed benzyl-based ones, exhibiting 25% and 41% higher conductivity when using crosslinkers with two and three crosslinking sites, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!