Besides its substantial role in eye lens, αB-crystallin (HSPB5) retains fundamental function in striated muscle during physiological or pathological modifications. In this study, we aimed to analyse the cellular and molecular factors driving the functional response of HSPB5 protein in different muscles from mice subjected to an acute bout of non-damaging endurance exercise or in C2C12 myocytes upon exposure to pro-oxidant environment, chosen as "in vivo" and "in vitro" models of a physiological stressing conditions, respectively. To this end, red (GR) and white gastrocnemius (GW), as sources of slow-oxidative and fast-glycolytic/oxidative fibers, as well as the soleus (SOL), mainly composed of slow-oxidative type fibers, were obtained from BALB/c mice, before (CTRL) and at different times (0', 15', 30' 120') following 1-h of running. Although the total level of HSPB5 protein was not affected by exercise, we found a significantly increase of phosphorylated HSPB5 (p-HSPB5) only in GR and SOL skeletal muscle with a higher amount of type I and IIA/X myofibers. The fiber-specific activation of HSPB5 was correlated to its interaction with the actin filaments, as well as to an increased level of lipid peroxidation and carbonylated proteins. The role of the pro-oxidant environment in HSPB5 response was investigated in terminally differentiated C2C12 myotubes, where most of HSPB5/pHSPB5 pool was present in the cytosolic compartment in standard culture conditions. As a result of exposure to pro-oxidizing, but not cytotoxic, HO concentration, the p-38MAPK-mediated phosphorylation of HSPB5 resulted functional to promote its interaction with the myofibrillar components, such as β-actin, desmin and filamin 1. This study provides novel information on the molecular pathway underlying the HSPB5 physiological function in skeletal muscle, confirming the contribution of the pro-oxidant environment in HSPB5 activation and interaction with substrate/client myofibrillar proteins, offering new insights for the study of myofibrillar myopathies and cardiomyopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454247PMC
http://dx.doi.org/10.1016/j.redox.2019.101183DOI Listing

Publication Analysis

Top Keywords

pro-oxidant environment
12
hspb5
9
hspb5 protein
8
skeletal muscle
8
environment hspb5
8
early response
4
response αb-crystallin
4
αb-crystallin single
4
single bout
4
bout aerobic
4

Similar Publications

A polysaccharide from Morchella esculenta mycelia: Structural characterization and protective effect on antioxidant stress on PC12 cells against HO-induced oxidative damage.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.

View Article and Find Full Text PDF

Background: Ferroptosis plays an important role in the development of diabetic nephropathy (DN). However, its specific regulatory mechanisms remain unclear.

Methods: MPC5 cells were cultured in high glucose (HG) medium to stimulate the HG environment in vitro.

View Article and Find Full Text PDF

Aquaporins are widely present in the plant kingdom and play important roles in plant response to abiotic adversity stresses such as water and temperature extremes. In this study, we investigated the regulatory role of NTPIP2;4 on drought tolerance in tobacco at physiological and transcriptional levels. In this experiment, we constructed an NtPIP2;4 overexpression vector and genetically transformed tobacco variety 'K326' to investigate the mechanism of NtPIP2;4 gene in regulating drought tolerance in tobacco at physiological and transcriptomic levels.

View Article and Find Full Text PDF

TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis.

BMC Plant Biol

January 2025

Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.

Background: Sucrose non-fermenting-1-related protein kinases (SnRKs) have been implicated in plant growth and stress responses. Although SnRK3.23 is known to be involved in drought stress, the underlying mechanism of resistance differs between Arabidopsis and rice, and little is known about its function in wheat.

View Article and Find Full Text PDF

Local delivery of mesenchymal stem cell-extruded nanovesicles through a bio-responsive scaffold for acute spinal cord injury treatment.

Int J Pharm

January 2025

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321002, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. Electronic address:

Intense inflammatory responses and elevated levels of reactive oxygen species (ROS) extremely exacerbate the pathological process of spinal cord injury (SCI). Mesenchymal stem cell (MSC)-derived extracellular vesicles (EV) can mitigate SCI-related inflammation but their production yield remains limited. Alternatively, MSC-extruded nanovesicles (NV) inherit the therapeutic potential from MSCs and have a markedly higher yield than EV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!