Objective: Mitochondria play pivotal roles in orchestrating signaling pathways in order to guarantee metabolic homeostasis under different stimuli. It has been demonstrated that the mito-nuclear communication is fundamental for facing physiological and/or stress-mediated cellular response through the activation of nuclear transcription factors. Here, we focused on the Forkhead box protein O1 (FoxO1) transcription factor that belongs to the FoxOs family proteins and is considered a "nutrients sensor" modulating the expression of nutrient-stress response genes.
Methods: In vitro and in vivo experimental systems, including 3T3-L1 white, X-9 beige and T37i brown adipocytes and different fat depots from C57BL/6 mice were used. The mitochondrial localization of FoxO1 was demonstrated by western blot analysis, confocal microscopy and chromatin immunoprecipitation assay, after sub-cellular compartment isolation. RT-qPCR analysis was used to evaluate the expression of antioxidant and mitochondrial genes after modulation of FoxO1 activity/localization. Treatment with diverse reactive oxygen species (ROS) species/sources were performed and assessed by cytofluorimetric analysis.
Results: We demonstrated that FoxO1 not exclusively localizes to cytosol and nucleus of adipocytes but also to mitochondria where it binds to mitochondrial DNA. We also proved that mitochondrial FoxO1 is phosphorylated upon normal feeding condition. Mitochondrial FoxO1 responds to starvation leaving mitochondrial compartment by ROS-mediated activation of the mitochondrial phosphatase PTPMT1. Indeed, FoxO1 de-phosphorylation and mito-to-nucleus shuttling was observed under starvation. Moreover, we provided evidence that ROS species/sources are able to differently modulate the mitochondrial localization of FoxO1.
Conclusion: The ability to localize at different cell compartments, including mitochondria, highlights a different layer of regulation of FoxO1 necessary for assuring a fast and efficient nutrient-stress response in white/beige adipose tissue. FoxO1 could be thus endorsed in the list of transcription factors involved in the mito-nuclear communication where ROS can act as upstream signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.metabol.2019.04.006 | DOI Listing |
Many of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
January 2025
Department of Pathology, West China Hospital, Sichuan University, Chengdu610041, China.
Cancer Lett
January 2025
Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China. Electronic address:
N-methyladenosine (m6A) methylation, is a well-known epigenetic modification involved in various biological processes, including tumorigenesis. However, the role of AlkB homolog 5 (ALKBH5), a critical component of m6A modification, remains unclear in glioma. This study investigates the function of ALKBH5 in glioma progression and its potential as a therapeutic target.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:
Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2024
The College of Life Sciences, Northwest University, Xi'an, China. Electronic address:
Zhi Bai Heye Fang (AR-PCC-NF) exerts a positive effect on glycolipid metabolic disorders in the clinical setting; however, its efficacy components and mechanisms of action remain unclear. Glycolipid metabolic disorders in mice were used to evaluate the therapeutic effects of AR-PCC-NF and its individual components, and the chemical components of AR-PCC-NF were detected by HPLC. An insulin-resistant cell model was then treated with 12 biological components in vitro, and seven candidate active components were administered to mice with glycolipid metabolic disorders to investigate the efficacy and mechanism of AR-PCC-NF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!