In contrast to plants, algae and cyanobacteria that contain glycolipids as the major lipid components in their photosynthetic membranes, phospholipids are the dominant lipids in the membranes of anoxygenic purple phototrophic bacteria. Although the phospholipid compositions in whole cells or membranes are known for a limited number of the purple bacteria, little is known about the phospholipids associated with individual photosynthetic complexes. In this study, we investigated the phospholipid distributions in both membranes and the light-harvesting 1-reaction center (LH1-RC) complexes purified from several purple sulfur and nonsulfur bacteria. P NMR was used for determining the phospholipid compositions and inductively coupled plasma atomic emission spectroscopy was used for measuring the total phosphorous contents. Combining these two techniques, we could determine the numbers of specific phospholipids in the purified LH1-RC complexes. A total of approximate 20-30 phospholipids per LH1-RC were detected as the tightly bound lipids in all species. The results revealed that while cardiolipin (CL) exists as a minor component in the membranes, it became the most abundant phospholipid in the purified core complexes and the sum of CL and phosphatidylglycerol accounted for more than two thirds of the total phospholipids for most species. Preferential association of these anionic phospholipids with the LH1-RC is discussed in the context of the recent high-resolution structure of this complex from Thermochromatium (Tch.) tepidum. The detergent lauryldimethylamine N-oxide was demonstrated to selectively remove phosphatidylethanolamine from the membrane of Tch. tepidum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2019.04.001 | DOI Listing |
BMC Genomics
January 2025
College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
Background: Puccinia striiformis f. sp. tritici (Pst) causes wheat stripe (yellow) rust disease, which is one of the most destructive diseases affecting wheat worldwide.
View Article and Find Full Text PDFFood Res Int
February 2025
Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China. Electronic address:
Lipids are essential sources of carbon and energy during flaxseed germination; however, the dynamic changes in key lipid metabolites, pathways, and their locations remain unclear. This study revealed that oil bodies migrated from well-distributed locations to the cell wall between 0-2 d, with cell contours gradually blurring during 2-3 d, initiating the germination process. Subsequently, the order of oil body migration was leaf > stem > root during 4-7 d.
View Article and Find Full Text PDFKidney Int
February 2025
Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA; Division of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA. Electronic address:
Choline is an essential nutrient for the biosynthesis of phospholipids and neurotransmitters and controls several physiological functions in mammals. It is metabolized in the organelles within cells, including mitochondria. However, its subcellular distribution and mode of mitochondrial transport remain poorly understood.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Medical Experimental Center, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China.
Introduction: Copine-3 (CPNE3) is a conservative calcium-dependent phospholipid-binding protein belonging to the copines protein family. CPNE3 has been implicated in the development and progression of several diseases, including cancer.
Method: Herein, we investigated the molecular mechanisms through which CPNE3 regulates the migration of lung adenocarcinoma (LUAD) cells in vitro.
Environ Sci Technol
January 2025
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
The distribution and bioaccumulation of environmental pollutants are essential to understanding their toxicological mechanism. However, achieving spatial resolution at the subtissue level is still challenging. Perfluorooctanesulfonate (PFOS) is a persistent environmental pollutant with widespread occurrence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!