AI Article Synopsis

  • This study analyzes how climate change impacts bird populations in the Amazon Tropical Forest, focusing on habitat range shifts, species loss, and ecosystem function vulnerabilities.
  • Using species distribution modeling, the researchers forecasted potential future habitat changes for 501 bird species under different climate scenarios projected for 2050 and 2070.
  • The findings indicate that up to 19% of species may lose suitable habitats, with over 70% loss in protected areas, particularly affecting frugivores, which play a critical role in seed dispersal and ecosystem health.

Article Abstract

Although the impacts of climate change on biodiversity are increasing worldwide, few studies have attempted to forecast these impacts on Amazon Tropical Forest. In this study, we estimated the impact of climate change on Amazonian avian assemblages considering range shifts, species loss, vulnerability of ecosystem functioning, future effectiveness of current protected areas and potential climatically stable areas for conservation actions. Species distribution modelling based on two algorithms and three different scenarios of climate change was used to forecast 501 avian species, organized on main ecosystem functions (frugivores, insectivores and nectarivores) for years 2050 and 2070. Considering the entire study area, we estimated that between 4 and 19% of the species will find no suitable habitat. Inside the currently established protected areas, species loss could be over 70%. Our results suggest that frugivores are the most sensitive guild, which could bring consequences on seed dispersal functions and on natural regeneration. Moreover, we identified the western and northern parts of the study area as climatically stable. Climate change will potentially affect avian assemblages in southeastern Amazonia with detrimental consequences to their ecosystem functions. Information provided here is essential to conservation practitioners and decision makers to help on planning their actions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459508PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215229PLOS

Publication Analysis

Top Keywords

climate change
20
ecosystem functions
12
functions provided
8
southeastern amazonia
8
avian assemblages
8
species loss
8
protected areas
8
climatically stable
8
study area
8
climate
5

Similar Publications

Direct air capture (DAC) is a promising technology for mitigating global climate change but suffers from low efficiency, small scale, and high cost due to the dilute atmospheric CO2, limited size of air contactors, and heat-driven CO2 release. Here, we propose combining DAC with widely used industrial cooling towers to extract CO2 from the air and using electrolysis to release the captured CO2 at room temperature. We first prepare a buffered absorbent solution consisting of sodium glycinate, glycine, and sodium chloride for effective CO2 capture from the air, solving the incompatibility problem of the cooling towers with conventional absorbents.

View Article and Find Full Text PDF

Despite earlier attempts to define global health, the discipline's boundaries are unclear, its priorities defined more by funding from high-income countries from the Global North than by global health trends. Governance and resource allocation are challenged by movements such as decolonizing global health. Inherent contradictions within global health derive from its historical evolution from tropical medicine and international health, as well as recent trends in infectious diseases.

View Article and Find Full Text PDF

Tropical peatlands significantly influence local and global carbon and nitrogen cycles, yet they face growing pressure from anthropogenic activities. Land use changes, such as peatland forests conversion to oil palm plantations, affect the soil microbiome and greenhouse gas (GHG) emissions. However, the temporal dynamics of microbial community changes and their role as GHG indicators are not well understood.

View Article and Find Full Text PDF

Adaptive Responses of Cyanobacteria to Phosphate Limitation: A Focus on Marine Diazotrophs.

Environ Microbiol

December 2024

CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls sur mer, France.

Phosphorus is an essential component of numerous macromolecules and is vital for life. Its availability significantly influences primary production, particularly in oligotrophic environments. Marine diazotrophic cyanobacteria, which play key roles in biogeochemical cycles through nitrogen fixation (N fixation), have adapted to thrive in phosphate (P)-poor areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: