To identify factors governing peel-color development in mandarins, we examined carotenoid content and composition and the expression of carotenoid-related genes during four stages of ripening (i.e., green, breaker, yellow, and orange) in two varieties: 'Ora', which has orange fruit, and 'Shani', which has orange-reddish fruit. The two varieties had different carotenoid compositions, and 'Shani' had a significantly higher level of total carotenoid pigments. 'Shani' was rich in the deep orange β-cryptoxanthin and the orange-reddish β-citraurin, whereas 'Ora' was rich in the orange violaxanthin. RNA-Seq analysis revealed significantly greater expression of the carotenoid-biosynthesis genes PSY, βLCY, βCHX, and CCD4b, as well as MEP-pathway genes and several ethylene-biosynthesis and -signaling genes in 'Shani' fruit. In contrast, the expression levels of genes involved in the synthesis of α-branch carotenoids (i.e., εLCY and εCHX) and ZEP, which is involved in the formation of violaxanthin, were significantly higher in the 'Ora' fruit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.9b00669 | DOI Listing |
Small
January 2025
Chair for Emerging Electronic Technologies, TUD Dresden University of Technology, Nöthnitzer Straße 61, 01187, Dresden, Germany.
The stability of perovskite quantum dot solar cells is one of the key challenges of this technology. This study reveals the unique degradation behavior of cesium lead triiodide (CsPbI) quantum dot solar cells. For the first time, it is shown that the oxygen-induced degradation and performance loss of CsPbI quantum dot photovoltaic devices can be reversed by exposing the degraded samples to humidity, allowing the performance to recover and even surpass the initial performance.
View Article and Find Full Text PDFMol Microbiol
January 2025
Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea.
The distance between the ribosome and the RNA polymerase active centers, known as the mRNA loop length, is crucial for transcription-translation coupling. Despite the existence of multiple expressomes with varying mRNA loop lengths, their in vivo roles remain largely unexplored. This study examines the mechanisms governing transcription termination in the Escherichia coli galactose operon, revealing a crucial role in the transcription and translation coupling state.
View Article and Find Full Text PDFBMC Gastroenterol
January 2025
Department of Gastroenterology, The First Affiliated Hospital of Shihezi University, No.107 North Second Road, Hongshan Street, Shihezi, 832008, China.
Background: Gallbladder and biliary diseases (GABD) represent prevalent disorders of the digestive system.
Methods: Data on age-standardized incidence rate (ASIR), age-standardized mortality rate (ASMR), and age-standardized disability-adjusted life years (DALYs) rate (ASDR) were extracted from the Global Burden of Disease (GBD) 2021 study. The estimated annual percentage change (EAPC) was utilized to quantify temporal trends in GABD.
Int J Biol Macromol
January 2025
Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India. Electronic address:
Phanerochaete chrysosporium (Pc), is a prominent lignin-degrading fungus which serves as an important source for lignin-degrading enzymes (LDEs). The present study was focused on a detailed in silico analysis and gene expression patterns of lignin peroxidases (PcLiPs), which is a significant class of LDEs. In spite of extensive research on P.
View Article and Find Full Text PDFJ Proteomics
January 2025
State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China. Electronic address:
The ability of axillary meristems to form axillary buds and subsequently develop into branches is influenced by phytohormones, environmental conditions, and genetic factors. The main trunk of Quercus fabri is prone to branching, which not only impacts the appearance and density of the wood and significantly reduces the yield rate. This study conducted transcriptomic, proteomic, and metabolomic analyses on three stages of axillary bud development in Q.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!