Monolayers of transition-metal dichalcogenides (TMDs) are promising components for flexible optoelectronic devices because of their direct band gap and atomically thin nature. The photoluminescence (PL) from these materials is often strongly suppressed by nonradiative recombination mediated by midgap defect states. Here, we demonstrate up to a 200-fold increase in PL intensity from monolayer MoS synthesized by chemical vapor deposition (CVD) by controlled exposure to laser light in the ambient. This spatially resolved passivation treatment is stable in air and vacuum. Regions unexposed to laser light remain dark in fluorescence despite continuous impingement of ambient gas molecules. A wavelength-dependent study confirms that PL brightening is concomitant with exciton generation in the MoS; laser light below the optical band gap fails to produce any enhancement in the PL. We highlight the photosensitive nature of the process by successfully brightening with a low-power broadband white light source. We decouple changes in absorption from defect passivation by examining the degree of circularly polarized PL. This measurement, which is independent of exciton generation, confirms that laser brightening reduces the rate of nonradiative recombination in the MoS. A series of gas exposure studies demonstrate a clear correlation between PL brightening and the presence of water. We propose that HO molecules passivate sulfur vacancies in the CVD-grown MoS but require photogenerated excitons to overcome a large adsorption barrier. This work represents an important step in understanding the passivation of CVD-synthesized TMDs and demonstrates the interplay between adsorption and exciton generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b00390 | DOI Listing |
Lasers Med Sci
January 2025
Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA).
View Article and Find Full Text PDFLasers Med Sci
January 2025
Erzincan University, 24002, Erzincan, Turkey.
The aesthetic understanding has found its place in dental clinics and prosthetic dental treatment. Determining the appropriate prosthetic tooth color between the clinician, patient and technician is a difficult process due to metamerism. Metamerism, known as the different perception of the color of an object under different light sources, is caused by the lighting differences between the laboratory and the dental clinic.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of High Pressure Physics, PAS, Warsaw, Poland.
This study addresses the issue of effective carrier injection to quantum wells in laser diode structures. The nitride light emitting structures used in this study were fabricated by Metal-Organic Vapor Phase Epitaxy (MOVPE). We developed three distinct sets of samples, with varying quantum barrier thickness, different QWs indium composition and different position relative to the p- and n-sides of the structure.
View Article and Find Full Text PDFACS Sens
January 2025
Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan.
The unique characteristics of biological structures depend on the behavior of DNA sequences confined in a microscale cell under environmental fluctuations and dissipation. Here, we report a prominent difference in fluorescence from dye-modified single-stranded DNA in a light-induced assembly of DNA-functionalized heterogeneous probe particles in a microwell of several microliters in volume. Strong optical forces from the Mie scattering of microparticles accelerated hybridization, and the photothermal effect from the localized surface plasmons in gold nanoparticles enhanced specificity to reduce the fluorescence intensity of dye-modified DNA to a few %, even in a one-base mismatched sequence, enabling us to clearly highlight the single nucleotide polymorphisms in DNA.
View Article and Find Full Text PDFJ Endod
January 2025
School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia. Electronic address:
Introduction: This in vitro study assessed how shade changes induced by endodontic medicaments affect the transmission of single and multiples wavelengths of infrared light through enamel and dentin.
Methods: Eighteen extracted single-rooted permanent teeth were prepared, removing all extrinsic staining, and cementum. Tooth slices were treated for 4 weeks with UltraCal™ XS, Ledermix™, or were untreated controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!