The admixture of CeO , Ce, CeCl , and MoO with an excess of LiCl as flux in evacuated silica ampules leads to large black single crystals as well as a black microcrystalline powder of Ce Cl [MoO ] after tempering at 850 °C for three days. The title compound crystallizes in the hexagonal space group P6 /m (a=934.93(4), c=538.86(2) pm) with two formula units per unit cell. The crystal structure consists of rather unusual trigonal-prismatic [MoO ] units besides Ce ions in a tetra-capped trigonal-prismatic coordination, formed by four Cl and six O ions. The black color is related to an optical band gap of 1.35(2) eV, which was determined by diffuse reflectance spectroscopy and confirmed by theoretical calculations. The low band gap between the 4f state of cerium (HOMO) and the 5d state of molybdenum (LUMO) gave rise to the idea of electronic excitation between these two states by IR irradiation, creating a drop in the resistivity of the material, which was detected by appropriate measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201901038 | DOI Listing |
ACS Cent Sci
December 2024
Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
For non-π-conjugated [SO] units, it is challenging to generate sufficient birefringence, owing to the high symmetry of the regular tetrahedron. Unlike the traditional trial-and-error approach, we propose a new paradigm for birefringence engineering to tune the optical properties based on [SO] units. Through the strategy of ligand substitution, we can predict its effect on the band gap and anisotropy.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address:
Ammonia borane (NHBH, AB) is considered a promising chemical hydrogen storage material. The development of efficient, stable, and economical catalysts for AB hydrolysis is essential for realizing the hydrogen energy economy. In this study, a series of p-p heterojunction catalysts, labeled M (P/S/Cl)-CuCoO, were fabricated using the high-temperature vapor phase method to achieve anionic interface gradient doping.
View Article and Find Full Text PDFWater Sci Technol
December 2024
Department of Biotechnology, Parul Institute of Technology, Vadodara, Gujarat¸ India E-mail:
In this study, three different materials were investigated for their ability to degrade benzene, toluene, and xylene (BTX) using light energy. The materials studied were activated charcoal (AC), zeolitic imidazolate framework (ZIF-8), and zirconium metal-organic framework (Zr-MOF). Initially, AC, ZIF-8, and Zr-MOF were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and spectroscopic analysis techniques.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
This study presents the design of a high-gain 16 × 16-slot antenna array with a low sidelobe level (SLL) using a tapered ridge gap waveguide feeding network for Ka-band applications. The proposed antenna element includes four cavity-backed slot antennas. A tapered feeding network is designed and utilized for unequal feeding of the radiating elements.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!