We propose an efficient method to simulate light propagation in lossless and non-scattering uniaxial birefringent media, based on a standard ray-tracing technique supplemented by a newly-derived transport equation for the electric field amplitude along a ray and a tailored interpolation algorithm for the reconstruction of the electromagnetic fields. We show that this algorithm is accurate in comparison to a full solution of Maxwell's equations when the permittivity tensor of the birefringent medium typically varies over a length much bigger than the wavelength. We demonstrate the usefulness of our code for soft matter by comparing experimental images of liquid crystal droplets with simulated bright-field optical micrographs, and conclude that our method is more general than the usual Jones method, which is only valid under polarised illumination conditions. We also point out other possible applications of our method, including liquid crystal based flat element design and diffraction pattern calculations for periodic liquid crystal samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8sm02448k | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA.
Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystals system. In this study, we first report the construction of charge transfer co-crystals allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-Tetrafluorophthalonitrile (TFP) as an electron acceptor.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, 226-8501, Japan.
Atomically flat two-dimensional networks of boron are attracting attention as post-graphene materials. An introduction of cations between the boron atomic layers can exhibit unique electronic functions that are not achieved by neutral graphene or its derivatives. In the present study, we propose a synthesis strategy for ion-laminated boron layered materials in a solution phase, which enables the preparation of analogs by changing the alkali-metal species.
View Article and Find Full Text PDFLangmuir
January 2025
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin RD, Shanghai 200234, China.
Ascorbyl tetraisopalmitate (VC-IP) is a novel form of ascorbic acid characterized by reduced water solubility due to complete acylation with palmitate. This study investigated the potential cosmetic application of VC-IP when encapsulated in lyotropic liquid crystal nanoparticles (VC-IP LCNPs) by using a high-pressure homogenization (HPH) method. The particle size, zeta potential, and polydispersity index (PDI) of the obtained VC-IP LCNPs were determined as 158.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southeast University, Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Institute of Advanced Materials and School of Chemistry and Chemical Engineering, 211189, Nanjing, CHINA.
In nature, organisms adapt to environmental changes through training to learn new abilities, offering valuable insights for developing intelligent materials. However, replicating this adaptive learning in synthetic materials presents a significant challenge. This study introduces a feasible approach to train liquid crystal elastomers (LCEs) by integrating a mechanophore tetraarylsuccinonitrile (TASN) into their main chain, addressing the challenge of enabling synthetic materials to exchange substances with their environment.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2025
Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium.
Lithium-sulfur batteries are a promising candidate for the next generation of rechargeable batteries. Despite extensive research on this system over the last decade, a complete understanding of the phase transformations has remained elusive. Conventional in-situ powder X-ray diffraction has struggled to determine the unit cell and space group of the polysulfides formed during charge and discharge cycles due to the high solubility of these solid products in the liquid electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!