A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Data Quality Assessment and Multi-Organizational Reporting: Tools to Enhance Network Knowledge. | LitMetric

AI Article Synopsis

  • The text discusses the importance of a multi-organizational data quality assessment (DQA) process that evaluates data consistency across different organizations and enhances traditional reliability methods.
  • The Data Coordinating Center for Kaiser Permanente's research employs a standardized DQA reporting system that compares data from eight organizations, ensuring a thorough and uniform assessment.
  • The CESR DCC has created tools for data managers to self-assess data quality, summarize findings, and facilitate knowledge sharing, making their model beneficial for other networks aiming to enhance data quality.

Article Abstract

Objective: Multi-organizational research requires a multi-organizational data quality assessment (DQA) process that combines and compares data across participating organizations. We demonstrate how such a DQA approach complements traditional checks of internal reliability and validity by allowing for assessments of data consistency and the evaluation of data patterns in the absence of an external "gold standard."

Methods: We describe the DQA process employed by the Data Coordinating Center (DCC) for Kaiser Permanente's (KP) Center for Effectiveness and Safety Research (CESR). We emphasize the CESR DQA reporting system that compares data summaries from the eight KP organizations in a consistent, standardized manner.

Results: We provide examples of multi-organization comparisons from DQA to confirm expectations about different aspects of data quality. These include: 1) comparison of direct data extraction from the electronic health records (EHR) and 2) comparison of non-EHR data from disparate sources.

Discussion: The CESR DCC has developed codes and procedures for efficiently implementing and reporting DQA. The CESR DCC approach is to 1) distribute DQA tools to empower data managers at each organization to assess their data quality at any time, 2) summarize and disseminate findings to address data shortfalls or document idiosyncrasies, and 3) engage data managers and end-users in an exchange of knowledge about the quality and its fitness for use.

Conclusion: The KP CESR DQA model is applicable to networks hoping to improve data quality. The multi-organizational reporting system promotes transparency of DQA, adds to network knowledge about data quality, and informs research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450241PMC
http://dx.doi.org/10.5334/egems.280DOI Listing

Publication Analysis

Top Keywords

data quality
24
data
16
dqa
9
quality assessment
8
multi-organizational reporting
8
network knowledge
8
dqa process
8
compares data
8
cesr dqa
8
reporting system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!