Radiomics and Machine Learning for Radiotherapy in Head and Neck Cancers.

Front Oncol

Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris Sorbonne Cité, Paris, France.

Published: March 2019

AI Article Synopsis

Article Abstract

An increasing number of parameters can be considered when making decisions in oncology. Tumor characteristics can also be extracted from imaging through the use of radiomics and add to this wealth of clinical data. Machine learning can encompass these parameters and thus enhance clinical decision as well as radiotherapy workflow. We performed a description of machine learning applications at each step of treatment by radiotherapy in head and neck cancers. We then performed a systematic review on radiomics and machine learning outcome prediction models in head and neck cancers. Machine Learning has several promising applications in treatment planning with automatic organ at risk delineation improvements and adaptative radiotherapy workflow automation. It may also provide new approaches for Normal Tissue Complication Probability models. Radiomics may provide additional data on tumors for improved machine learning powered predictive models, not only on survival, but also on risk of distant metastasis, in field recurrence, HPV status and extra nodal spread. However, most studies provide preliminary data requiring further validation. Promising perspectives arise from machine learning applications and radiomics based models, yet further data are necessary for their implementation in daily care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445892PMC
http://dx.doi.org/10.3389/fonc.2019.00174DOI Listing

Publication Analysis

Top Keywords

machine learning
28
head neck
12
neck cancers
12
radiomics machine
8
radiotherapy head
8
radiotherapy workflow
8
learning applications
8
learning
7
machine
6
radiomics
5

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!