An increasing amount of research is demonstrating the role of long noncoding RNAs (lncRNAs) in human cardiovascular disease, and in particular, atherosclerosis. To date, the mechanism through which lncRNA OIP5-AS1 regulates the oxidative low-density lipoprotein (ox-LDL)-mediated endothelial cell apoptosis is still unclear. Results from this study found that lncRNA OIP5-AS1 was significantly over-expressed in the human umbilical vein endothelial cells (HUVECs) administered with ox-LDL. The silencing of OIP5-AS1 inhibited apoptosis and promoted proliferation via inducing G0/G1 cycle arrest. Chromatin immunoprecipitate (ChIP) revealed that lncRNA OIP5-AS1 reduced GSK-3β expression through recruiting EZH2, a critical element of the Polycomb Repressive Complex 2 (PRC2) complex that directly bind with the GSK-3β promoter region. Rescue experiments validated that GSK-3β could eliminate the effect of OIP5-AS1 on HUVECs. Overall, these findings suggest that lncRNA OIP5-AS1 accelerates ox-LDL mediated vascular endothelial cell apoptosis through targeting GSK-3β via recruiting EZH2, providing potential therapeutic strategies for atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456540PMC

Publication Analysis

Top Keywords

lncrna oip5-as1
16
recruiting ezh2
12
long noncoding
8
oip5-as1 accelerates
8
accelerates ox-ldl
8
ox-ldl mediated
8
mediated vascular
8
vascular endothelial
8
endothelial cells
8
apoptosis targeting
8

Similar Publications

Exploring the role of OIP5-AS1 in the mechanisms of delayed fracture healing: functional insights and clinical implications.

J Orthop Surg Res

January 2025

Department of Orthopaedics, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No. 818, Renminzhong Road, Wuling District, Changde, 415000, Hunan, China.

Objective: Fracture is a common traumatic disease and there is a risk of delayed healing after fracture occurs. This study aimed to explore the regulatory roles and clinical implications of OIP5-AS1 in delayed fracture healing.

Methods: The study included 80 normal fracture healing patients and 80 delayed fracture healing patients.

View Article and Find Full Text PDF

Background: Long non-coding RNAs (lncRNAs) are major research factors in a variety of diseases, and lncRNA OIP5-AS1 (OIP5-AS1) was shown to mediate the progression of various tumors. This paper discusses how OIP5-AS1 could potentially be used for diagnosing and prognosticating cholangiocarcinoma (CHOL).

Methods: The ENROCI project evaluated the OIP5-AS1 expression in CHOL samples and confirmed it using RT-qPCR.

View Article and Find Full Text PDF

Long non-coding RNA OIP5-AS1 protects neurons from ischemia-reperfusion injury and inhibits neuronal apoptosis through TAB-2.

Biochem Biophys Res Commun

January 2025

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China. Electronic address:

Ischemic stroke represents a highly perilous cerebrovascular disorder, involving a variety of complex pathophysiological mechanisms. OIP5 antisense RNA 1 (OIP5-AS1) is a long non-coding RNA (LncRNA) that has been shown to play a pivotal role in a variety of disease systems. However, there are relatively few studies on ischemic stroke.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are critical regulators of physiological and pathological processes, with their dysregulation increasingly implicated in aging and Alzheimer's disease (AD). Using spatial transcriptomics, we analyzed 78 postmortem brain sections from 21 ROSMAP participants to map the spatial expression of lncRNAs in the dorsolateral prefrontal cortex of aged human brains. Compared to mRNAs, lncRNAs exhibited greater subregion-specific expression, with enrichment in antisense and lincRNA biotypes.

View Article and Find Full Text PDF

Pyroptosis plays a pivotal role in airway epithelial inflammation during the progression of asthma. This study aimed to explore the influence and mechanisms of opa-interacting protein 5 antisense RNA1 (OIP5-AS1) and growth arrest-specific transcript 5 (GAS5) on pyroptosis in asthmatic models. Pyroptosis was induced in Dermatophagoides pteronyssinus 1 (Der p1)-exposed 16HBE cells and ovalbumin (OVA)-challenged rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!