Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To explore the effect of propofol on human cardiac AC16 cells under CoCl2-induced hypoxic injury and the possible mechanisms. Methods: Human AC16 cardiomyocytes were treated with cobalt chloride (CoCl2) to mimic hypoxic condition in cultured cardiomyocytes. The AC16 cells were divided into 3 groups: a control group, a CoCl2 hypoxia group (CoCl2 group), and a propofol+CoCl2 group (propofol+ CoCl2 group). The cell viability was assessed by cell counting kit-8 (CCK-8). Cell apoptosis ratio (AR) and the mitochondrial membrane potential (Δψm) were detected by flow cytometry. The reactive oxygen species (ROS) production in AC16 cells were determined with the ROS-sensitive fluorescent probe. Meanwhile, total intracellular levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in AC16 cells were detected with commercially available kits. Western blot was used to evaluate the activation of c-Jun N-terminal kinase (JNK) and p38 signaling pathways. Results: 1) Compared with the control group, AC16 cell viability was decreased significantly in the CoCl2 group following the treatment with 500 μmol/L CoCl2 (P<0.01); 2) Compared with the control group, AR value in AC16 cells was increased significantly in the CoCl2 group, while Δψm was decreased significantly (all P<0.01). Compared with the CoCl2 group, AR value in AC16 cells was decreased significantly in the propofol+CoCl2 group, while Δψm was increased significantly (both P<0.05); 3) Compared with the control group, the levels of ROS and MDA were increased significantly, and the level of SOD was significantly decreased in the CoCl2 group (all P<0.01). Compared with the CoCl2 group, the ROS and MDA levels in the propofol+CoCl2 group were increased significantly and the SOD levels were decreased significantly (all P<0.05); 4) Compared with the control group, the phosphorylation levels of JNK and p38 were increased significantly (both P<0.05) in the CoCl2 group. Compared with the CoCl2 group, the phosphorylation levels of JNK and p38 were decreased significantly in the propofol+CoCl2 group (both P<0.05). Conclusion: The pretreatment with propofol may protect human cardiac AC16 cells from the chemical hypoxia-induced injury through regulation of JNK and p38 signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11817/j.issn.1672-7347.2019.03.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!