A Review of Hologram Storage and Self-Written Waveguides Formation in Photopolymer Media.

Polymers (Basel)

School of Electrical and Electronic Engineering, UCD Communications and Optoelectronic Research Centre, University College Dublin, Belfield, Dublin 4, Ireland.

Published: August 2017

Photopolymer materials have received a great deal of attention because they are inexpensive, self-processing materials that are extremely versatile, offering many advantages over more traditional materials. To achieve their full potential, there is significant value in understanding the photophysical and photochemical processes taking place within such materials. This paper includes a brief review of recent attempts to more fully understand what is needed to optimize the performance of photopolymer materials for Holographic Data Storage (HDS) and Self-Written Waveguides (SWWs) applications. Specifically, we aim to discuss the evolution of our understanding of what takes place inside these materials and what happens during photopolymerization process, with the objective of further improving the performance of such materials. Starting with a review of the photosensitizer absorptivity, a dye model combining the associated electromagnetics and photochemical kinetics is presented. Thereafter, the optimization of photopolymer materials for HDS and SWWs applications is reviewed. It is clear that many promising materials are being developed for the next generation optical applications media.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418820PMC
http://dx.doi.org/10.3390/polym9080337DOI Listing

Publication Analysis

Top Keywords

photopolymer materials
12
materials
9
self-written waveguides
8
swws applications
8
review hologram
4
hologram storage
4
storage self-written
4
waveguides formation
4
photopolymer
4
formation photopolymer
4

Similar Publications

3D printing in palliative medicine: systematic review.

BMJ Support Palliat Care

December 2024

Health Research Institute, School of Design, and Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland

Background: Three-dimensional printing (3DP) enables the production of highly customised, cost-efficient devices in a relatively short time, which can be particularly valuable to clinicians treating patients with palliative care intent who are in need of timely and effective solutions in the management of their patients' specific needs, including the relief of distressing symptoms.

Method: Four online databases were searched for articles published by December 2020 that described studies using 3DP in palliative care. The fields of application, and the relevant clinical and technological data were extracted and analysed.

View Article and Find Full Text PDF

This study examines the influence of nanofillers on the ultraviolet (UV) penetration depth of photopolymer resins used in stereolithography (SLA) 3D printing, and their impact on printability. Three nanofillers, multiwalled carbon nanotubes (MWCNT), graphene nanoplatelets (xGNP), and boron nitride nanoparticles (BNNP), were incorporated into a commercially available photopolymer resin to prepare nanocomposite formulations. The UV penetration depth (Dp) was assessed using the Windowpane method, revealing a significant reduction with the addition of nanofillers.

View Article and Find Full Text PDF

Advancements in Materials for 3D-Printed Microneedle Arrays: Enhancing Performance and Biocompatibility.

Micromachines (Basel)

November 2024

Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.

The rapid advancement of 3D printing technology has revolutionized the fabrication of microneedle arrays (MNAs), which hold great promise in biomedical applications such as drug delivery, diagnostics, and therapeutic interventions. This review uniquely explores advanced materials used in the production of 3D-printed MNAs, including photopolymer resins, biocompatible materials, and composite resins, designed to improve mechanical properties, biocompatibility, and functional performance. Additionally, it introduces emerging trends such as 4D printing for programmable MNAs.

View Article and Find Full Text PDF

Endowing single-crystal polymers with circularly polarized luminescence.

Nat Commun

January 2025

Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

The preparation of single-crystal polymers with circularly polarized luminesce (CPL) remains a challenging task in chemistry and materials science. Herein, we present the single-crystal-to-single-crystal topochemical photopolymerization of a chiral organic salt to achieve this goal. The in-situ reaction of 1,4-bis((E)-2-(pyridin-4-yl)vinyl)benzene (1) with chiral (+)- or (-)-camphorsulfonic acid (CSA) gives the monomer crystal 1[( + )/( - )-CSA] showing yellow CPL with a high luminescent dissymmetry factor |g| of 0.

View Article and Find Full Text PDF

Objective: The aim of the study is to study the degree of adhesion of reference strains of microorganisms to the surface of modern polymer materials for the manufacture of removable prostheses.

Materials And Methods: The primary and residual microbial adhesion of 4 types of polymers was studied: acrylic polymer (Villacryl H Plus), monomerless polymer (Vertex ThermoSens), photopolymers for additive manufacturing (Harz Labs Dental Denture Base, Harz Labs Dental Sand). , , , and were used as reference strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!