We report the synthesis of two novel binuclear Pd⁻diimine catalysts and their unique behaviors in initiating "living" polymerization of ethylene and 1-hexene. These two binuclear catalysts, [(N^N)Pd(CH₂)₃C(O)O(CH₂)O(O)C(CH₂)₃Pd(N^N)](SbF₆)₂ (: = 4, : = 6) (N^N≡ArN=C(Me)⁻(Me)C=NAr, Ar≡2,6⁻(Pr)₂C₆H₃), were synthesized by simply reacting [(N^N)Pd(CH₃)(N≡CMe)]SbF₆ () with diacrylates, 1,4-butanediol diacrylate and 1,6-hexanediol diacrylate, respectively. Their unique binuclear structure with two identical Pd⁻diimine acrylate chelates covalently linked together through an ester linkage was confirmed by NMR and single crystal XRD measurements. Ethylene "living" polymerizations were carried out at 5 °C and under ethylene pressure of 400 and 100 psi, respectively, with the binuclear catalysts, along with a mononuclear chelate catalyst, [(N^N)Pd(CH₂)₃C(O)OMe]SbF₆ (), for comparison. All the polyethylenes produced with both binuclear catalysts show bimodal molecular weight distribution with the number-average molecular weight of the higher molecular weight portion being approximately twice that of the lower molecular weight portion. The results demonstrate the presence of monofunctional chain growing species resembling catalyst , in addition to the expected bifunctional species leading to bifunctional "living" polymerization, in the polymerization systems. Both types of chain growing species exhibit "living" characteristics under the studied conditions, leading to the simultaneous linear increase of molecular weight in both portions. However, when applied for the "living" polymerization of 1-hexene, the binuclear catalyst leads to polymers with only monomodal molecular weight distribution, indicating the sole presence of monofunctional chain growing species. These two binuclear catalysts are the first Pd⁻diimine catalysts capable of initiating bifunctional ethylene "living" polymerization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432338 | PMC |
http://dx.doi.org/10.3390/polym9070282 | DOI Listing |
Microb Cell Fact
January 2025
MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
Background: Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Institute of Agrifood Research and Technology (IRTA), Centre de La Ràpita, Crta. Poble Nou del Delta Km 5.5, 43540, la Ràpita, Spain.
The effect of different feeding habits on gut morphology and digestive function has been intensively studied during the last decades but sympatric closely related fishes are relatively rare objects of such studies. In the present study, we have identified both morphological and physiological changes in the digestive system of a sympatric pair of whitefish represented by "normal" Coregonus lavaretus pidschian (benthivorous) and "dwarf" C. l.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
Challenges emerge in the quest for highly efficient and biocompatible coatings to tackle microbial contamination. Here, we propose a bioinspired paradigm combining (-)-epigallocatechin gallate (EGCG) and l-arginine surfactants (LAM) as all-green building blocks for advanced coatings with superior performance. Molecular dynamics simulations reveal the natural assembly process of the EGCG/LAM supramolecular nanoparticles (ELA NPs).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Shandong Provincial Third Hospital, Shandong University, Jinan 250031, China; Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China. Electronic address:
Acanthopanax senticosus is a typical food medicine homology in China. The antioxidant and anti-aging activities of A. senticosus polysaccharides, especially the purified polysaccharide, have not been thoroughly investigated.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China. Electronic address:
In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!