Improving the safety efficacy ratio of existing drugs is a current challenge to be addressed rather than the development of novel drugs which involve much expense and time. The efficacy of drugs is affected by a number of factors such as their low aqueous solubility, unequal absorption along the gastrointestinal (GI) tract, risk of degradation in the acidic milieu of the stomach, low permeation of the drugs in the upper GI tract, systematic side effects, etc. This review aims to enlighten readers on the role of pH sensitive hydrogels in drug delivery, their mechanism of action, swelling, and drug release as a function of pH change along the GI tract. The basis for the selection of materials, their structural features, physical and chemical properties, the presence of ionic pendant groups, and the influence of their p and p values on the ionization, consequent swelling, and targeted drug release are also highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432076PMC
http://dx.doi.org/10.3390/polym9040137DOI Listing

Publication Analysis

Top Keywords

sensitive hydrogels
8
hydrogels drug
8
drug delivery
8
drug release
8
drug
4
delivery history
4
history properties
4
properties swelling
4
swelling release
4
release mechanism
4

Similar Publications

Temperature-sensitive driving assembled fluorescence hydrogel based dual-mode sensor for adsorbing and detecting of heavy metal cadmium ions in food and water.

Food Chem

December 2024

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.

The denatured bovine serum albumin (dBSA) is coupled with the CdTe/CdS quantum dot and the resulting CdTe/CdS@dBSA complex is assembled and retained in the poly(n-isopropyl acrylamide) (PNIPAM) hydrogel via regulating temperature and pH to form the CdTe/CdS@dBSA-PNIPAM fluorescence hydrogel substrate, which is able to adsorb and sense cadmium ions (Cd). Based on this fluorescence hydrogel, a fluorescence and colorimetric dual-mode detection system is established to quantitatively detect Cd with a limit of detection (LOD) of 2.88 nM for fluorescence detection and 11.

View Article and Find Full Text PDF

Hydrogel Doped with Sinomenine-CeO Nanoparticles for Sustained Intra-articular Therapy in Knee Osteoarthritis.

J Drug Target

January 2025

Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210000, China.

Intra-articular injection has emerged as a promising approach for treating knee osteoarthritis (OA), showing notable efficacy and potential. However, the risk of side effects remains a concern with the commonly used steroid therapies in clinical practice. Here, we developed an intra-articular injectable hydrogel drug depot (SMN-CeO@G) for sustained OA treatment.

View Article and Find Full Text PDF

Slide-Ring Structured Stress-Electric Coupling Hydrogel Microspheres for Low-Loss Transduction Between Tissues.

Adv Mater

January 2025

Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.

High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.

View Article and Find Full Text PDF
Article Synopsis
  • Smart hydrogel sensors can respond to stimuli like pH and temperature, with potential uses in biomedical, environmental, and wearable tech.
  • Developing wearable hydrogels that respond to body temperature, adhere well, and are transparent has been challenging.
  • The newly created thermo-responsive hydrogel changes properties based on temperature, is made using 3D printing, and can detect temperature and strain, making it ideal for smart medical applications.
View Article and Find Full Text PDF

A Polysaccharide-Calcium Carbonate Microsphere-Doped Hydrogel for Accelerated Diabetic Wound Healing via Synergistic Glucose-Responsive Hypoglycemic and Anti-Inflammatory Effects.

ACS Biomater Sci Eng

January 2025

Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China.

Article Synopsis
  • Long-term hyperglycemia and inflammation in diabetes often lead to chronic wounds that do not heal, but a new hydrogel with plant polysaccharides shows promise in promoting healing.
  • This hydrogel, PL-PVA/DOP-CaCO, is engineered to release insulin in response to high glucose levels and has anti-inflammatory properties, enhancing the wound healing process.
  • In studies, this hydrogel improved healing in diabetic rats by regulating blood sugar, reducing inflammation, and boosting the growth of cells essential for wound recovery.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!