This article compares the catalytic activities of oxidized carbon black (oCB) and graphene oxide (eGO) samples on the kinetics of a reaction of diglycidyl ether of bisphenol A (DGEBA) with a diamine, leading to crosslinked insoluble networks. The study is mainly conducted by rheometry and Differential Scanning Calorimetry (DSC). Following the same oxidation procedure, CB samples are more efficiently oxidized than graphite samples. For instance, CB and graphite samples with high specific surface areas (151 and 308 m²/g), as oxidized by the Hummers' method, exhibit O/C wt/wt ratios of 0.91 and 0.62, respectively. Due to the higher oxidation levels, these oCB samples exhibit a higher catalytic activity toward the curing of epoxy resins than fully exfoliated graphene oxide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432347PMC
http://dx.doi.org/10.3390/polym9040133DOI Listing

Publication Analysis

Top Keywords

graphene oxide
12
catalytic activity
8
oxidized carbon
8
carbon black
8
epoxy resins
8
graphite samples
8
samples
5
oxidized
4
activity oxidized
4
black graphene
4

Similar Publications

High-Strength and Rapidly Degradable Nanocomposite Yarns from Recycled Waste Poly(glycolic acid) (PGA).

Polymers (Basel)

January 2025

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.

Poly(glycolic acid) (PGA) is a rapidly degradable polymer mainly used in medical applications, attributed to its relatively high cost. Reducing its price will boost its utilization in a wider range of application fields, such as gas barriers and shale gas extraction. This article presents a strategy that utilizes recycled PGA as a raw material alongside typical carbon nanomaterials, such as graphene oxide nanosheets (GO) and carbon nanotubes (CNTs), to produce low-cost, fully degradable yarns via electrospinning and twisting techniques.

View Article and Find Full Text PDF

The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE).

View Article and Find Full Text PDF

Synthesis, Electrical Conductivity, and Wave-Absorption Performances of Bamboo-Based Composites Co-Doped with Graphene Oxide and Polyaniline.

Polymers (Basel)

December 2024

Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China.

Bamboo was carbonized and further modified via co-doping with graphene oxide (GO) and polyaniline (PANI) to prepare microwave absorption composites (GO/PANI/CB) by in situ polymerization of 1R-(-)-Camphorsulfonic acid (L-CSA). The conductivity of GO/PANI/CB reached 2.17 ± 0.

View Article and Find Full Text PDF

Self-Powered Triboelectricity-Driven Multiple-Input-Single-Output Occupancy Detection System Using a Triboelectric Nanogenerator for Energy Management.

Polymers (Basel)

December 2024

Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.

An energy crisis, resulting from rapid population growth and advancements in the Internet of Things, has increased the importance of energy management strategies. Conventionally, energy management is conducted using sensors; however, additional energy is required to maintain sensor operation within these systems. Herein, an all-fiber-based triboelectric nanogenerator with O plasma treatment, graphene oxide/tannic acid solution coating, and hexane/1-octadecanethiol solution coating (AFT-OGH) is fabricated to implement a self-powered sensor, generating a high electrical power density, of 0.

View Article and Find Full Text PDF
Article Synopsis
  • Transition metal oxides, like MnO, show great promise as anodes for flexible electrodes but face challenges such as low conductivity and poor cycling performance.
  • A new method called "spontaneous complexation and exfoliation" creates flexible thin-film electrodes using MnO nanocrystals and reduced graphene oxide (rGO), improving their mechanical flexibility and lithium-ion storage capacity.
  • The resulting flexible anodes deliver around 1220 mAh/g over 1000 cycles with high-rate capacity, while maintaining performance even under bending, highlighting their potential for advanced energy storage solutions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!