Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transition metal oxides with high theoretic capacities are promising materials as battery-type electrodes for hybrid supercapacitors, but their practical applications are limited by their poor electric conductivity and unsatisfied rate capability. In this work, a hybrid structure of CoO nanowires coated with conformal polypyrrole (Ppy) nanolayer is proposed, designed and fabricated on a flexible carbon substrate through a facile two-step method. In the first step, porous CoO nanowires are fabricated on flexible carbon substrate through a hydrothermal procedure combined with an annealing process. In the second step, a uniform nanolayer of Ppy is further coated on the surfaces of the CoO nanowires, resulting in a hybrid core-shell CoO@Ppy nanoarrays. The CoO@Ppy aligned on carbon support can be directly utilized as electrode material for hybrid supercapacitors. Since the conductive Ppy coating layer provides enhanced electric conductivity, the hybrid electrode demonstrates much higher capacity and superior rate capability than pure CoO nanowires. As a further demonstration, Ppy layer can also be realized on SnO₂ nanowires. Such facile conductive-layer coating method can be also applied to other types of conducting polymers (as the shell) and metal oxide materials (as the core) for various energy-related applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523395 | PMC |
http://dx.doi.org/10.3390/nano9040586 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!