Amorphous hydrogenated silicon carbonitride (a-SiCN:H) thin films were grown using electron cyclotron resonance chemical vapour deposition using a mixture of methane, nitrogen, and silane as precursors. The origin of the variation of macroscopic properties such as hardness (H), elastic modulus (E), photoluminescence (PL), and the optical band gap was investigated through their correlation with the microscopic features of a-SiCN:H thin films as a function of the process parameters, including the deposition temperature and methane gas flow rate. From a microstructural perspective, the thin films were investigated using x-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, elastic recoil detection, transmission electron microscopy, and x-ray diffraction. It is verified that an increase of the substrate temperature resulted in the substitution of hydrogen atoms mainly by carbon atoms, causing the density of the silicon carbide-related structures to increase in the amorphous structure of the a-SiCN:H thin films. Hardness and elastic modulus were found to increase with the deposition temperature and decreased with an increase of the methane gas flow during the deposition, resulting in higher carbon content in the films. The observed changes are ascribed to the reduced density of the weak hydrogen terminated bonds and the variation of the relative bond density of Si-C to Si-N bonds. In addition, the thin films were depth profiled using a slow positron beam to investigate the role of vacancies. The observed increase of the positronium formation with increasing deposition temperature was found to correlate with the variation of PL, where an enhancement of the visible emission originating from carbon-related defects was observed. A set of optimized process parameters to fabricate a-SiCN:H thin films with improved visible emission and hardness properties is suggested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab180c | DOI Listing |
Nanomicro Lett
January 2025
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States.
Porous silicon (PSi) thin films on silicon substrates have been extensively investigated in the context of biosensing applications, particularly for achieving label-free optical detection of a wide range of analytes. However, mass transport challenges have made it difficult for these biosensors to achieve rapid response times and low detection limits. In this work, we introduce an approach for improving the efficiency of molecule transport in PSi by using open-ended PSi membranes atop paper substrates in a flow-through sensor scheme.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory of Thin Film Devices and Technology, Nankai University, Tianjin 300350, China.
Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has emerged as a promising photovoltaic material due to its low cost and high stability. The CZTSSe film for high-performance solar cells can be obtained by annealing the deposited CZTS precursor films with selenium (a process known as selenization). The design of the selenization process significantly affects the quality of the absorber layer.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea.
Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Furman University, Greenville, South Carolina 29613, United States.
Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!