AI Article Synopsis

  • ApoA-I boosts insulin production and release in pancreatic β cells and helps in cholesterol management through specific transporters (ABCA1 and ABCG1).
  • In β-double knockout (DKO) mice, which lack these transporters, insulin secretion is impaired due to high cholesterol levels in their islets.
  • Treatment with ApoA-I enhances insulin secretion in β-DKO mice but doesn’t fix underlying metabolic issues, indicating its effects are independent of cholesterol regulation.

Article Abstract

Apolipoprotein A-I (apoA-I), the main protein constituent of HDLs, increases insulin synthesis and insulin secretion in pancreatic β cells. ApoA-I also accepts cholesterol that effluxes from cells expressing ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G (ABCG1). Mice with conditional deletion of ABCA1 and ABCG1 in β cells [β-double knockout (DKO) mice] have increased islet cholesterol levels and reduced glucose-stimulated insulin secretion (GSIS). The project asks whether metabolic pathways are dysregulated in β-DKO mouse islets and whether this can be corrected, and GSIS improved, by treatment with apoA-I. β-DKO mice were treated with apoA-I or PBS, and islets were isolated for determination of GSIS. Total RNA was extracted from β-DKO and control mouse islets for microarray analysis. Metabolic pathways were interrogated by functional enrichment analysis. ApoA-I treatment improved GSIS in β-DKO but not control mouse islets. Plasma lipid and lipoprotein levels and islet cholesterol levels were also unaffected by treatment with apoA-I. Cholesterol metabolism, glucose metabolism, and inflammation pathways were dysregulated in β-DKO mouse islets. This was not corrected by treatment with apoA-I. In summary, apoA-I treatment improves GSIS by a cholesterol-independent mechanism, but it does not correct metabolic dysregulation in β-DKO mouse islets.-Hou, L., Tang, S., Wu, B. J., Ong, K.-L., Westerterp, M., Barter, P. J., Cochran, B. J., Tabet, F., Rye, K.-A. Apolipoprotein A-I improves pancreatic β-cell function independent of the ATP-binding cassette transporters ABCA1 and ABCG1.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201802512RRDOI Listing

Publication Analysis

Top Keywords

atp-binding cassette
16
mouse islets
16
apolipoprotein a-i
12
abca1 abcg1
12
β-dko mouse
12
treatment apoa-i
12
a-i improves
8
improves pancreatic
8
pancreatic β-cell
8
β-cell function
8

Similar Publications

ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.

View Article and Find Full Text PDF

Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.

View Article and Find Full Text PDF

Effect of Genetic Variants on Rosuvastatin Pharmacokinetics in Healthy Volunteers: Involvement of , and .

Int J Mol Sci

December 2024

Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain.

Statins are the primary drugs used to prevent cardiovascular disease by inhibiting the HMG-CoA reductase, an enzyme crucial for the synthesis of LDL cholesterol in the liver. A significant number of patients experience adverse drug reactions (ADRs), particularly musculoskeletal problems, which can affect adherence to treatment. Recent clinical guidelines, such as those from the Clinical Pharmacogenetics Implementation Consortium (CPIC) in 2022, recommend adjusting rosuvastatin doses based on genetic variations in the and genes to minimize ADRs and improve treatment efficacy.

View Article and Find Full Text PDF
Article Synopsis
  • Innovative strategies are needed to combat fungal pathogens for sustainable crop protection, with traditional fungicides facing resistance issues due to their single-target action.
  • The study investigated the synergistic effects of chitosan (CS) and the fungicide azoxystrobin, finding a high synergy score that significantly improves antifungal efficacy.
  • Additionally, combining CS and azoxystrobin with RNA interference techniques enhanced fungal control, highlighting a promising eco-friendly approach and the need for further research on its molecular mechanisms.
View Article and Find Full Text PDF

Macrophages undergo polarization, resulting in distinct phenotypes. These transitions, including de-/repolarization, lead to hysteresis, where cells retain genetic and epigenetic signatures of previous states, influencing macrophage function. We previously identified a set of interferon-stimulated genes (ISGs) associated with high lipid levels in macrophages that exhibited hysteresis following M1 polarization, suggesting potential alterations in lipid metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!