Objective: Machine learning techniques have demonstrated superior discrimination compared to conventional statistical approaches in predicting trauma death. The objective of this study is to evaluate whether machine learning algorithms can be used to assess risk and dynamically identify patient-specific modifiable factors critical to patient trajectory for multiple key outcomes after severe injury.
Methods: SuperLearner, an ensemble machine-learning algorithm, was applied to prospective observational cohort data from 1494 critically-injured patients. Over 1000 agnostic predictors were used to generate prediction models from multiple candidate learners for outcomes of interest at serial time points post-injury. Model accuracy was estimated using cross-validation and area under the curve was compared to select among predictors. Clinical variables responsible for driving outcomes were estimated at each time point.
Results: SuperLearner fits demonstrated excellent cross-validated prediction of death (overall AUC 0.94-0.97), multi-organ failure (overall AUC 0.84-0.90), and transfusion (overall AUC 0.87-0.9) across multiple post-injury time points, and good prediction of Acute Respiratory Distress Syndrome (overall AUC 0.84-0.89) and venous thromboembolism (overall AUC 0.73-0.83). Outcomes with inferior data quality included coagulopathic trajectory (AUC 0.48-0.88). Key clinical predictors evolved over the post-injury timecourse and included both anticipated and unexpected variables. Non-random missingness of data was identified as a predictor of multiple outcomes over time.
Conclusions: Machine learning algorithms can be used to generate dynamic prediction after injury while avoiding the risk of over- and under-fitting inherent in ad hoc statistical approaches. SuperLearner prediction after injury demonstrates promise as an adaptable means of helping clinicians integrate voluminous, evolving data on severely-injured patients into real-time, dynamic decision-making support.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457612 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213836 | PLOS |
Med Phys
January 2025
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.
Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.
Behav Res Methods
January 2025
CAP Team, Centre de Recherche en Neurosciences de Lyon - INSERM U1028 - CNRS UMR 5292 - UCBL - UJM, 95 Boulevard Pinel, 69675, Bron, France.
J Imaging Inform Med
January 2025
Department of Orthopedic Surgery, Arrowhead Regional Medical Center, Colton, CA, USA.
Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Software Convergence, Seoul Women's University, Hwarango 621, Nowongu, Seoul, 01797, Republic of Korea.
In this paper, we propose a method to address the class imbalance learning in the classification of focal liver lesions (FLLs) from abdominal CT images. Class imbalance is a significant challenge in medical image analysis, making it difficult for machine learning models to learn to classify them accurately. To overcome this, we propose a class-wise combination of mixture-based data augmentation (CCDA) method that uses two mixture-based data augmentation techniques, MixUp and AugMix.
View Article and Find Full Text PDFFront Optoelectron
January 2025
Institute of Physics, Saratov State University, Saratov, 410012, Russia.
The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!