We report a high-throughput technique for characterising the motility of spermatozoa using differential dynamic microscopy. A movie with large field of view (∼10mm2) records thousands of cells (e.g. ≈ 5000 cells even at a low cell density of 20 × 106 cells/ml) at once and yields averaged measurements of the mean ([Formula: see text]) and standard deviation (σ) of the swimming speed, head oscillation amplitude (A0) and frequency (f0), and the fraction of motile spermatozoa (α). Interestingly, we found that the measurement of α is facilitated because the swimming spermatozoa enhance the motion of the non-swimming population. We demonstrate the ease and rapidity of our method by performing on-farm characterisation of bull spermatozoa motility, and validate the technique by comparing laboratory measurements with tracking. Our results confirm the long-standing theoretical prediction that [Formula: see text] for swimming spermatozoa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457493 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202720 | PLOS |
NPJ Parkinsons Dis
January 2025
Univ. Grenoble Alpes, AGEIS, 38000, Grenoble, France.
The risk of Parkinson's disease (PD) associated with farming has received considerable attention, in particular for pesticide exposure. However, data on PD risk associated with specific farming activities is lacking. We aimed to explore whether specific farming activities exhibited a higher risk of PD than others among the entire French farm manager (FM) population.
View Article and Find Full Text PDFSchizophr Bull
January 2025
Department of Psychology, University of Maryland, College Park, MD 20742, United States.
Background And Hypothesis: Among individuals living with psychotic disorders, social impairment is common, debilitating, and challenging to treat. While the roots of this impairment are undoubtedly complex, converging lines of evidence suggest that social motivation and pleasure (MAP) deficits play a central role. Yet most neuroimaging studies have focused on monetary rewards, precluding decisive inferences.
View Article and Find Full Text PDFNeuropediatrics
January 2025
Department of Inborn Errors of Metabolism, Ludwig-Maximilians-University Munich, University Hospital, Munich, Germany.
Ceroid lipofuscinosis type 2 (CLN2) is caused by biallelic pathogenic variants in the TPP1 gene, encoding lysosomal tripeptidyl peptidase 1 (TPP1). The classical late-infantile phenotype has an age of onset between 2 and 4 years and is characterized by psychomotor regression, myoclonus, ataxia, blindness, and shortened life expectancy. Vision loss occurs due to retinal degeneration, usually when severe neurological symptoms are already evident.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada.
Readily available animal tissue, such as ground beef, is a convenient material to represent the dielectric properties of biological tissue when validating microwave imaging and sensing hardware and techniques. The reliable use of these materials depends on the accurate characterization of their properties. In this work, the effect of physiologically relevant levels of dehydration on ex vivo tissue samples is quantified while controlling for variation within and between samples.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
Background: Coxiella burnetii is the etiological agent of Q fever in humans, a zoonosis of increasingly important public health concern. The disease results in significant economic losses to livestock farmers and its presence in ready-to-eat dairy products poses a public health threat to consumers.
Aim: This study aimed to detect Coxiella burnetii in dairy products in Kwara State, Nigeria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!