Imaging of Tissue-Specific and Temporal Activation of GPCR Signaling Using DREADD Knock-In Mice.

Methods Mol Biol

Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.

Published: August 2019

Engineered G protein-coupled receptors (DREADDs, designer receptors exclusively activated by designer drugs) are convenient tools for specific activation of GPCR signaling in many cell types. DREADDs have been utilized as research tools to study numerous cellular and physiologic processes, including regulation of neuronal activity, behavior, and metabolism. Mice with random insertion transgenes and adeno-associated viruses have been widely used to express DREADDs in individual cell types. We recently created and characterized ROSA26-GsDREADD knock-in mice to allow Cre recombinase-dependent expression of a Gαs-coupled DREADD (GsD) fused to GFP in distinct cell populations in vivo. These animals also harbor a CREB-activated luciferase reporter gene for analysis of CREB activity by in vivo imaging, ex vivo imaging, or biochemical reporter assays. In this chapter, we provide detailed methods for breeding GsD animals, inducing GsD expression, stimulating GsD activity, and measuring basal and stimulated CREB reporter bioluminescence in tissues in vivo, ex vivo, and in vitro. These animals are available from our laboratory for non-profit research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855306PMC
http://dx.doi.org/10.1007/978-1-4939-9121-1_21DOI Listing

Publication Analysis

Top Keywords

activation gpcr
8
gpcr signaling
8
knock-in mice
8
cell types
8
vivo imaging
8
vivo
5
imaging tissue-specific
4
tissue-specific temporal
4
temporal activation
4
signaling dreadd
4

Similar Publications

N-terminal fragment shedding contributes to signaling of the full-length adhesion receptor ADGRL3.

J Biol Chem

January 2025

Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA. Electronic address:

Most adhesion GPCRs undergo autoproteolytic cleavage during receptor biosynthesis, resulting in non-covalently bound N- and C-terminal fragments (NTF and CTF) that remain associated during receptor trafficking to the plasma membrane. While substantial evidence supports increased G protein signaling when just the CTF is expressed, there is an ongoing debate about whether NTF removal is required to initiate signaling in the context of the wild-type receptor. Here, we use adhesion GPCR latrophilin-3 (ADGRL3) as a model receptor to investigate tethered agonist-mediated activation.

View Article and Find Full Text PDF

Autoimmune diseases are complex conditions characterized by immune-mediated tissue damage and chronic inflammation. Protease-activated receptor 2 (Par2) has been implicated in these diseases, exhibiting dual roles that complicate its therapeutic potential. This review examines the perplexing functions of Par2, which promotes inflammation through immune cell activation while facilitating tissue healing in damaged organs.

View Article and Find Full Text PDF

Detection of Human GPCR Activity in Drosophila S2 Cells Using the Tango System.

Int J Mol Sci

December 2024

Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan.

G protein-coupled receptors (GPCRs) are essential cell surface proteins involved in transducing extracellular signals into intracellular responses, regulating various physiological processes. This study validated the use of the Tango assay, a sensitive method for detecting GPCR activation, in Schneider 2 (S2) cells, focusing on the human Dopamine Receptor D4 (DRD4). Plasmids encoding the LexA-tagged human DRD4 receptor and a luciferase reporter were co-transfected into S2 cells and stimulated with dopamine.

View Article and Find Full Text PDF

Exploring the Binding Mechanism of ADGRG2 Through Metadynamics and Biochemical Analysis.

Int J Mol Sci

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

G protein-coupled receptors (GPCRs) play essential roles in numerous physiological processes and are key targets for drug development. Among them, adhesion GPCRs (aGPCRs) stand out for their unique domain structures and diverse functions. ADGRG2 is a member of the aGPCR family and is involved in the regulation of various systems in the human body, including reproductive, nervous, cardiovascular, and endocrine systems.

View Article and Find Full Text PDF

The influence of phosphoinositide lipids in the molecular biology of membrane proteins: recent insights from simulations.

J Mol Biol

January 2025

Institute of Biological Chemistry, Academia Sinica, Taipei 115 Taiwan; Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ UK.

The phosphoinositide family of membrane lipids play diverse and critical roles in eukaryotic molecular biology. Much of this biological activity derives from interactions of phosphoinositide lipids with integral and peripheral membrane proteins, leading to modulation of protein structure, function, and cellular distribution. Since the discovery of phosphoinositides in the 1940s, combined molecular biology, biophysical, and structural approaches have made enormous progress in untangling this vast and diverse cellular network of interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!