Optical Modulation of Metabotropic Glutamate Receptor Type 5 In Vivo Using a Photoactive Drug.

Methods Mol Biol

Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain.

Published: August 2019

Optopharmacology is a very promising approach based on the use of light-deliverable drugs, which allows manipulating physiological processes with high spatiotemporal resolution. Light-dependent drugs (i.e. caged-compounds) targeting G protein-coupled receptors (GPCRs) have been developed to provide great pharmacological precision on the control of pain. Metabotropic glutamate type 5 (mGlu) receptors are widely expressed through the pain neuraxis and play a key role in pain transmission. In line with this, selective mGlu receptor negative allosteric modulators (NAMs) have consistently shown analgesic activity in experimental animal models of inflammatory pain. Accordingly, we synthesized a light-deliverable drug (i.e. caged compound) using the chemical structure of raseglurant, a mGlu receptor NAM, as a molecular scaffold. And thereafter, we evaluated the analgesic activity of the caged compound in formalin-injected (hind paw) mice upon light irradiation (405 nm). Of note, light was both delivered at the peripheral (i.e. hind paw) and central level (i.e. thalamus), by means of brain-implanted fiber-optics. The novel light-deliverable drug, JF-NP-26, showed antinociceptive activity upon violet light irradiation either of the hind paw or the thalamus, demonstrating the ability of precisely activating, in time and space, the caged compound. Here, we describe in detail the protocol used to perform a reliable and reproducible formalin nociception test in mice using an optopharmacology approach (i.e. light-deliverable compounds).

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9121-1_20DOI Listing

Publication Analysis

Top Keywords

caged compound
12
hind paw
12
metabotropic glutamate
8
mglu receptor
8
analgesic activity
8
light-deliverable drug
8
light irradiation
8
optical modulation
4
modulation metabotropic
4
glutamate receptor
4

Similar Publications

Introduction: The developed domestic retrodipeptide analogue of cholecystokinin tetrapeptide (CCK) (N-(6-phenylhexanoyl)-glycyltryptophan amide, or compound GB-115) with antagonistic properties in relation to CCK1 receptors has anxiolytic activity previously shown in preclinical and clinical studies. The aim of the study was to evaluate the anxiolytic effect of GB-115 as a tablet form with subchronic oral administration in comparison with phenazepam in nonhuman primates.

Materials And Methods: The study was conducted on four male rhesus monkeys (Macaca mulatta) aged 5.

View Article and Find Full Text PDF

Engineered light-sensitive molecules offer a sophisticated toolkit for the manipulation of biological systems with both spatial and temporal precision. Notably, artificial "caged" compounds can activate specific receptors solely in response to light exposure. However, the uncaging process can lead to the formation of potentially harmful byproducts.

View Article and Find Full Text PDF

Rationale: Alkaptonuria (AKU) is a rare, inherited metabolic disease caused by deficient activity of homogentisic acid oxidase, leading to the accumulation of homogentisic acid and its oxidized product, benzoquinone acetic acid. These compounds cause black discoloration of cartilage, degeneration, inflammation, and calcification of intervertebral disks and large joints, resulting in pain and impaired quality of life. Despite its debilitating effects, there are no curative treatments for AKU, and management remains supportive.

View Article and Find Full Text PDF

Semiconducting Electrides Derived from Sodalite: A First-Principles Study.

ACS Omega

January 2025

Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States.

Electrides are ionic crystals, with electrons acting as anions occupying well-defined lattice sites. These exotic materials have attracted considerable attention in recent years for potential applications in catalysis, rechargeable batteries, and display technology. Among this class of materials, electride semiconductors can further expand the horizon of potential applications due to the presence of a band gap.

View Article and Find Full Text PDF

We provide important novel insights into skeletal transformations of fullerene by reporting new cases of cage shrinkage in the most abundant C60 fullerene via a C2 loss. High-temperature (400-500 oC) chlorination of IPR C60 with SbCl5 or SbCl5/SbCl3 mixtures predominantly gives non-IPR C60Cln compounds via Stone-Wales rearrangements, but the present study further reveals non-classical C58Cln chlorofullerenes as by-products. The new C58(NC1)Cl20 and C58(NC1)Cl24 chlorides have been isolated by air-free HPLC and structurally characterized by X-ray crystallography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!