Interactions between G protein-coupled receptors and their ligands hold extensive potential for drug discovery. Studying these interactions poses technical problems due to their transient nature and the inherent difficulties when working with G protein-coupled receptors (GPCR) that are only functional in a membrane setting. Here, we describe the use of a furan-based chemical cross-linking methodology to achieve selective covalent coupling between a furan-modified peptide ligand and its native GPCR present on the surface of living cells under normal cell culture conditions. This methodology relies on the oxidation of the furan moiety, which can be achieved by either addition of an external oxidation signal or by the reactive oxygen species produced by the cell. The cross-linked ligand-GPCR complex is subsequently detected by Western blotting based on the biotin label that is incorporated in the peptide ligand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9121-1_5 | DOI Listing |
Breast Cancer Res
December 2024
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.
View Article and Find Full Text PDFAnticancer Res
January 2025
Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan;
Background/aim: The five members of the mammalian muscarinic acetylcholine receptor family are encoded by the cholinergic receptor, muscarinic, 1-5 (CHRM1-5) genes. CHRM genes are incriminated in formation of various cancer types, but their roles in head and neck squamous cell carcinoma (HNSCC) are improperly understood. Aberrant epigenetic modifications of specific tumor-suppressor genes and oncogenes are known to promote cancer development.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Biochemistry and Molecular Biology, Jining Medical University, Jining, China. Electronic address:
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. Recent research underscores the pivotal role of G protein-coupled receptors (GPCRs) in shaping the tumor immune microenvironment (TIME) within TNBC. This review focuses on four principal GPCRs-chemokine receptors, sphingosine-1-phosphate receptors, prostaglandin E2 receptors, and lactate receptors-that have garnered substantial attention in TNBC studies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065.
This study shows that five membrane proteins-three GPCRs, an ion channel, and an enzyme-form self-clusters under natural expression levels in a cardiac-derived cell line. The cluster size distributions imply that these proteins self-oligomerize reversibly through weak interactions. When the concentration of the proteins is increased through heterologous expression, the cluster size distributions approach a critical distribution at which point a phase transition occurs, yielding larger bulk phase clusters.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
Trace amines are physiologically active amines present in all organisms. They are structurally identical to traditional monoamines and are rapidly metabolized by monoamine oxidases. The mammalian neurological system generates these molecules at rates equivalent to traditional monoamines, but because of their short half-life, they are only observable in trace quantities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!