We demonstrate improved optical sectioning in light sheet fluorescence microscopy using tunable structured illumination (SI) frequencies to optimize image quality in scattering specimens. The SI patterns are generated coherently using a one-dimensional spatial light modulator for maximum pattern contrast, and the pattern spatial frequency is adjustable up to half the incoherent cutoff frequency of our detection objective. At this frequency, we demonstrate background reductions of 2 orders of magnitude.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454294 | PMC |
http://dx.doi.org/10.1117/1.JBO.24.4.046501 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
South China University of Technology, South China Advanced Institute for Soft Matter Science and Technology, South China Advanced Institute for Soft Matter Science and Technology, 510640, Guangzhou, CHINA.
The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.
View Article and Find Full Text PDFNanoscale
January 2025
National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
The controllable synthesis of monodisperse mesoporous silica microspheres with unique physicochemical properties is becoming increasingly important for a variety of applications such as catalysts, chromatography, drug delivery and sensors. Here, we report a facile microfluidic-assisted sol-gel method for the preparation of silica microspheres with precisely controlled properties such as the size of the microspheres, the surface morphology, porosity and stiffness. All these properties can be manipulated by changing specific synthesis parameters, such as changing the microfluidic channels to tune the size of the microdroplets (tens to hundreds of microns), changing the contents of the precursor solution to manipulate the surface morphology (wrinkled to smooth surface) and changing the gelation/annealing conditions to tune the porosity (surface area up to 1021 m g) and stiffness of the microspheres (elastic modulus tunable from 0.
View Article and Find Full Text PDFAdv Mater
January 2025
Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.
Current challenges in tissue engineering include creation of extracellular environments that support and interact with cells using biochemical, mechanical, and structural cues. Spatial control over these cues is currently limited due to a lack of suitable fabrication techniques. This study introduces Xolography, an emerging dual-color light-sheet volumetric printing technology, to achieve control over structural and mechanical features for hydrogel-based photoresins at micro- to macroscale while printing within minutes.
View Article and Find Full Text PDFSci Rep
January 2025
College of Physics and Electronic Science, Hubei Normal University, Huangshi, 435002, P. R. China.
We propose a double-cavity optomechanical system with nonreciprocal coupling to realize tunable optical nonreciprocity that has the prospect of making an optical device for the manipulation of information processing and communication. Here we investigate the steady-state dynamic processes of the double-cavity system and the transmission of optical waves from opposite cavity directions. The transmission spectrum of the probe field is presented in detail and the physical mechanism of the induced transparency window is analyzed.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Physics, University of Toronto, Toronto, Ontario, Canada.
Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!