A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a supF-based mutation-detection system in the extreme thermophile Thermus thermophilus HB27. | LitMetric

Development of a supF-based mutation-detection system in the extreme thermophile Thermus thermophilus HB27.

Mol Genet Genomics

Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan.

Published: August 2019

Thermus thermophilus (T. thermophilus) HB27 is an extreme thermophile that grows optimally at 65-72 °C. Heat-induced DNA lesions are expected to occur at a higher frequency in the genome of T. thermophilus than in those of mesophiles; however, the mechanisms underlying the maintenance of genome integrity at high temperatures remain poorly understood. The study of mutation spectra has become a powerful approach to understanding the molecular mechanisms responsible for DNA repair and mutagenesis in mesophilic species. Therefore, we developed a supF-based system to detect a broad spectrum of mutations in T. thermophilus. This system was validated by measuring spontaneous mutations in the wild type and a udgA, B double mutant deficient in uracil-DNA glycosylase (UDG) activity. We found that the mutation frequency of the udgA, B strain was 4.7-fold higher than that of the wild type and G:C→A:T transitions dominated, which was the most reasonable for the mutator phenotype associated with the loss of UDG function in T. thermophilus. These results show that this system allowed for the rapid analysis of mutations in T. thermophilus, and may be useful for studying the molecular mechanisms responsible for DNA repair and mutagenesis in this extreme thermophile.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-019-01565-9DOI Listing

Publication Analysis

Top Keywords

extreme thermophile
12
thermus thermophilus
8
thermophilus hb27
8
molecular mechanisms
8
mechanisms responsible
8
responsible dna
8
dna repair
8
repair mutagenesis
8
mutations thermophilus
8
thermophilus system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!