Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Self-assembling phenylalanine-based peptides have garnered interest owing to their potential for creating new functional materials. Here, we designed four diastereomers, l-Phe-l-Phe-l-Phe (FFF), d-Phe-l-Phe-l-Phe (fFF), l-Phe-d-Phe-l-Phe (FfF) and l-Phe-l-Phe-d-Phe (FFf), to analyze the effect of the d-isomer on the self-assembly. Using SEM, TG, VCD, and solid-state NMR measurements, we found that only FFf forms a γ-turn conformation and self-assembles into a nanoplate with higher thermal stability. The supramolecular structure of FFf consists of intra- and intermolecular hydrogen bonds and π-π stackings. From our results, we have discovered that FFf forms a new type of self-assembling γ-turn conformation, clarifying the structural role of a d-amino acid residue in supramolecular formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp00233b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!