Leaf functional traits have attracted the attention of ecologists for several decades, but few studies have systematically assessed leaf morphological traits (termed "economic traits"), stomatal (termed "hydraulic"), and anatomical traits of entire forest communities, thus it is unclear whether their relationships are consistent among trees, shrubs, and herbs, and which anatomical traits should be assigned to economical or hydraulic traits. In this study, we collected leaf samples of 106 plant species in temperate forests and 164 plant species in subtropical forests and determined nine key functional traits. We found that functional traits differed between temperate and subtropical forests. Leaf traits also differed between different plant functional groups, irrespective of forest type; dry matter content, stomatal density, and cell tense ratio followed the order trees > shrubs > herbs, whereas specific leaf area and sponginess ratio showed the opposite pattern. The correlations of leaf traits were not consistent among trees, shrubs, and herbs, which may reflect different adaptive strategies. Principal component analysis indicated that leaf economics and hydraulic traits were uncoupled in temperate and subtropical forests, and correlations of anatomical traits and economic and hydraulic traits were weak, indicating anatomical traits should be emphasized in future studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456615 | PMC |
http://dx.doi.org/10.1038/s41598-019-42335-2 | DOI Listing |
Mol Cancer
January 2025
i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal.
Rectal cancer accounts for over 35% of the worldwide colorectal cancer burden representing a distinctive subset of cancers from those arising in the colon. Colorectal cancers exhibit a continuum of traits that differ with their location in the large intestine. Due to anatomical and molecular differences, rectal cancer is treated differently from colon cancer, with neoadjuvant chemoradiotherapy playing a pivotal role in the control of the locally advanced disease.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Key Comprehensive Laboratory of Forestry, Northwest A&F University, Yangling, Shaanxi Province, 712100, P. R. China.
Background: Study the leaf functional traits is highly important for understanding the survival strategies and climate adaptability of old trees. In this study, the old (over 100 years old) and mature trees (about 50 years old) of Pinus tabulaeformis in the Loess Plateau were studied, and the variation of 18 leaf functional traits (6 economic, 4 anatomical, 2 photosynthetic and 6 physiological traits) was analyzed to understand the differences of survival strategies between old and mature trees. Combined with transcriptome and simple sequence repeats (SSR) techniques, the effects of soil property factors and genetic factors on leaf functional traits and the potential molecular mechanisms of traits differences were studied.
View Article and Find Full Text PDFAnn Bot
January 2025
Theoretical and Experimental Ecology Station, CNRS, Moulis, France.
Background And Aims: It is assumed that trees should adapt their above and belowground organs as they age. However, most studies to date have quantified these trait adjustments in homogeneous forest stands, confounding the effect of stand aging on soil properties and the intrinsic response of trees to aging.
Methods: Here, we examined 11 morphological, architectural, anatomical and mycorrhizal fine root traits of each of the first five orders for 66 Pinus koraiensis individuals of 16 to 285 years old in northeast China, while accounting for soil characteristics (pH and total C, N and P concentrations).
Ann Bot
January 2025
Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 01 Třeboň, Czech Republic.
Background And Aims: Understanding interspecific differences in plant growth rates and their internal and external drivers is key to predicting species responses to ongoing environmental changes. Annual growth rates vary among plants based on their ecological preferences, growth forms, ecophysiological adaptations, and evolutionary history. However, the relative importance of these factors remains unclear, particularly in high-mountain ecosystems experiencing rapid changes.
View Article and Find Full Text PDFbioRxiv
January 2025
Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
Increasing variability down serially segmented structures, such as mammalian molar teeth and vertebrate limb segments, is a much-replicated pattern. The same phenotypic pattern has conflicting interpretations at different evolutionary scales. Macroevolutionary patterns are thought to reflect greater evolutionary potential in later-forming segments, but microevolutionary patterns are thought to reflect less evolutionary potential and greater phenotypic plasticity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!