5GB1 is an obligate methylotroph which grows on methane or methanol with similar growth rates. It has long been assumed that the core metabolic pathways must be similar on the two substrates, but recent studies of methane metabolism in this bacterium suggest that growth on methanol might have significant differences from growth on methane. In this study, both a targeted metabolomics approach and a C tracer approach were taken to understand core carbon metabolism in 5GB1 during growth on methanol and to determine whether such differences occur. Our results suggest a systematic shift of active core metabolism in which increased flux occurred through both the Entner-Doudoroff (ED) pathway and the partial serine cycle, while the tricarboxylic acid (TCA) cycle was incomplete, in contrast to growth on methane. Using the experimental results as constraints, we applied flux balance analysis to determine the metabolic flux phenotype of 5GB1 growing on methanol, and the results are consistent with predictions based on ATP and NADH changes. Transcriptomics analysis suggested that the changes in fluxes and metabolite levels represented results of posttranscriptional regulation. The combination of flux balance analysis of the genome-scale model and the flux ratio from C data changed the solution space for a better prediction of cell behavior and demonstrated the significant differences in physiology between growth on methane and growth on methanol. One-carbon compounds such as methane and methanol are of increasing interest as sustainable substrates for biological production of fuels and industrial chemicals. The bacteria that carry out these conversions have been studied for many decades, but gaps exist in our knowledge of their metabolic pathways. One such gap is the difference between growth on methane and growth on methanol. Understanding such metabolism is important, since each has advantages and disadvantages as a feedstock for production of chemicals and fuels. The significance of our research is in the demonstration that the metabolic network is substantially altered in each case and in the delineation of these changes. The resulting new insights into the core metabolism of this bacterium now provide an improved basis for future strain design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456754PMC
http://dx.doi.org/10.1128/mBio.00406-19DOI Listing

Publication Analysis

Top Keywords

growth methanol
20
growth methane
16
core metabolism
12
growth
10
methanol
8
methane
8
methane methanol
8
metabolic pathways
8
metabolism bacterium
8
flux balance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!