Genomic imprinting, where an allele's expression pattern depends on its parental origin, is thought to result primarily from an intragenomic evolutionary conflict. Imprinted genes are widely expressed in the brain and have been linked to various phenotypes, including behaviours related to risk tolerance. In this paper, we analyse a model of evolutionary bet-hedging in a system with imprinted gene expression. Previous analyses of bet-hedging have shown that natural selection may favour alleles and traits that reduce reproductive variance, even at the expense of reducing mean reproductive success, with the trade-off between mean and variance depending on the population size. In species where the sexes have different reproductive variances, this bet-hedging trade-off differs between maternally and paternally inherited alleles. Where males have the higher reproductive variance, alleles are more strongly selected to reduce variance when paternally inherited than when maternally inherited. We connect this result to phenotypes connected with specific imprinted genes, including delay discounting and social dominance. The empirical patterns are consistent with paternally expressed imprinted genes promoting risk-averse behaviours that reduce reproductive variance. Conversely, maternally expressed imprinted genes promote risk-tolerant, variance-increasing behaviours. We indicate how future research might further test the hypotheses suggested by our analysis. This article is part of the theme issue 'Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335451 | PMC |
http://dx.doi.org/10.1098/rstb.2018.0142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!