Nano-SiO₂ was immobilized onto dialdehyde cellulose (DAC) to prepare SiO₂/DAC hybrid materials. Fourier transform infrared spectra (FTIR), thermogravimetric analysis and field emission scanning electron microscopy of SiO₂/DAC indicated that nano-SiO₂ had been successfully hybridized with DAC. X-ray diffraction suggested that the structure of DAC was influenced by the nano-SiO₂. SiO₂/DAC was then used as the cross-linker of collagen solutions. Gel electrophoresis patterns and FTIR reflected that cross-linking occurred between DAC and collagen, but that collagen retained the native triple-helix, respectively. Differential scanning calorimetry indicated that the thermal stability of collagen could be effectively improved by SiO₂/DAC. Dynamic rheology tests revealed that the flowability of collagens cross-linked by SiO₂/DAC was superior to that of those cross-linked by DAC; meanwhile, collagens cross-linked by SiO₂/DAC possessed a more homogeneous morphology compared to those cross-linked by DAC. The hybridization of SiO₂/DAC as a cross-linker for collagen could effectively prevent the gelation caused by excessive cross-linking, and significantly improve the thermostability of collagen, which could be helpful for collagen being applied in fields including biomaterials, cosmetics, etc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415362 | PMC |
http://dx.doi.org/10.3390/polym10050550 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!