Amphiphilic surfaces are particularly effective at inhibiting the adhesion of microorganisms (bacteria, cells, microalgae, etc.) in liquid media. The aim of this study is to determine the best hydrophilic linker to promote bonding between poly(ethylene glycol) (PEG) as a hydrophilic additive and poly(dimethyl siloxane) (PDMS) as the hydrophobic matrix. Various parameters have been studied (molecular weight, linker type, and polymer end-group), as well as the efficiency of the linking, the capacity of PEG to access to the surface of the film, and overall film homogeneity. According to the results, a PDMS linker paired with a PEG moiety allows for compatibilization of the compounds during cross-linking. This compatibilization seems to provide a good bonding with the matrix and a good surface access to the hydrophilic moiety. Therefore, this structure comprising a linking function attached to the PDMS⁻PEG copolymer has high potential as a non-releasable additive for amphiphilic coating applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415241 | PMC |
http://dx.doi.org/10.3390/polym10040445 | DOI Listing |
Adv Healthc Mater
July 2023
School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore.
Bacterial infections and multiple encrustations are life-threatening complications in patients implanted with urological devices. Limited by time-consuming procedures and substrate dependence, it is difficult to simultaneously prevent the aforementioned complications. Herein, is reported the design of a salt-triggered chondroitin sulfate complex (CS/Si-N ) coating with adaptive dissociation, which realizes the dual functions of antibacterial and anti-multiple encrustations in urological devices with arbitrary shapes.
View Article and Find Full Text PDFPolymers (Basel)
April 2018
University of Southern Brittany, EA 3884, Laboratoire de Biotechnologie et Chimie Marines (LBCM), Institut Universitaire Européen de la Mer IUEM, F-56100 Lorient, France.
Amphiphilic surfaces are particularly effective at inhibiting the adhesion of microorganisms (bacteria, cells, microalgae, etc.) in liquid media. The aim of this study is to determine the best hydrophilic linker to promote bonding between poly(ethylene glycol) (PEG) as a hydrophilic additive and poly(dimethyl siloxane) (PDMS) as the hydrophobic matrix.
View Article and Find Full Text PDFPLoS One
January 2018
Department of Prosthodontics, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!