Poly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester widely studied as a biomaterial for tissue engineering and controlled release applications, but its low bioactivity and weak mechanical performance limits its applications. In this work, nanosized bioglasses with two different compositions (SiO₂⁻CaO and SiO₂⁻CaO⁻P₂O₅) were synthesized with a hydrothermal method, and each one was used as filler in the preparation of PCL nanocomposites via the in situ ring opening polymerization of ε-caprolactone. The effect of the addition of 0.5, 1 and 2.5 wt % of the nanofillers on the molecular weight, structural, mechanical and thermal properties of the polymer nanocomposites, as well as on their enzymatic hydrolysis rate, bioactivity and biocompatibility was systematically investigated. All nanocomposites exhibited higher molecular weight values in comparison with neat PCL, and mechanical properties were enhanced for the 0.5 and 1 wt % filler content, which was attributed to extensive interactions between the filler and the matrix, proving the superiority of in situ polymerization over solution mixing and melt compounding. Both bioglasses accelerated the enzymatic degradation of PCL and induced bioactivity, since apatite was formed on the surface of the nanocomposites after soaking in simulated body fluid. Finally, all samples were biocompatible as Wharton jelly-derived mesenchymal stem cells (WJ-MSCs) attached and proliferated on their surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415238 | PMC |
http://dx.doi.org/10.3390/polym10040381 | DOI Listing |
Adv Mater
January 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
Layered transition metal oxides (LTMOs) are attractive cathode candidates for rechargeable secondary batteries because of their high theoretical capacity. Unfortunately, LTMOs suffer from severe capacity attenuation, voltage decay, and sluggish kinetics, resulting from irreversible lattice oxygen evolution and unstable cathode-electrolyte interface. Besides, LTMOs accumulate surface residual alkali species, like hydroxides and carbonates, during synthesis, limiting their practical application.
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Pharmacy, Hangzhou Medical College, 8 Yikang Road, Hangzhou 311300, PR China.
A Fe-catalyzed hydrocyclization reaction of unactivated alkenes was developed, utilizing PhSiH as the hydrogen source, yielding 2,3-dihydroquinazolinone (DHQZ) derivatives in moderate to good yields. Notably, when the substrate was switched to -cyano--(2-(prop-1-en-2-yl)phenyl)benzamides, the reaction yielded only the unreduced products. Mechanistic studies revealed that the intramolecular addition of the in situ formed radical to the unactivated alkene results in the formation of the fused ring.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Chemistry and Chemical Engineering, Yan'an University Yan'an 716000 P.R. China
Pyrazoles are an important class of five-membered nitrogen heterocyclic compounds that have been widely used in agriculture and medicine. Exploring their synthesis methods under mild conditions has always been a hot research topic. Herein, a new strategy was developed to enhance the activity of a zirconium metal centre for the synthesis of -acylpyrazole derivatives using CpZrCl as a pre-catalyst.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea. Electronic address:
Dieckol is a brown algal phlorotannin with potent bioactivities such as hepatoprotective effects. This study aimed to produce dieckol-rich extract from Eisenia bicyclis and apply them as a functional ingredient for a novel bacterial cellulose (BC)-based dessert. The modeling and optimization of the ultrasound-assisted extraction (UAE) process were performed.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Shanghai Key Laboratory of Magnetic Resonance, Institute of Magnetic Resonance and Molecular Imaging in Medicine, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China.
In traditional operations of all-solid-state lithium metal batteries (ASSLMBs), a small thin lithium metal circular disk is employed as a lithium metal anode (LMA). However, ASSLMBs with a circular-disk LMA often fail in <150 cycles with low capacity retention. In this work, we developed a new ring-shaped LMA to improve cyclability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!