AI Article Synopsis

Article Abstract

Aggregation and coalescence are major drawbacks that contribute to polydispersity in microparticles and nanoparticles fabricated from diverse biopolymers. This study presents the evaluation of a novel method for the direct, electrospray-induced fabrication of small, CaCl₂/ethanol-hardened low methoxy pectin/arabinoxylans composite microbeads. The electrospray method was evaluated to control particle size by adjusting voltage, flux, and crosslinking solution content of CaCl₂/ethanol. A bead diameter of 1µm was set as reference to test the capability of this method. Insulin was chosen as a model carried molecule. Statistical analysis was a central composite rotatable design (CCRD) with a factorial arrangement of 2⁴. The variables studied were magnitude and particle size dispersion. For the determination of these variables, light diffraction techniques, scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy were used. Major interaction was found for ethanol and CaCl₂ as well as flow and voltage. Stable spherical structures of core⁻shell beads were obtained with neither aggregation nor coalescence for all treatments where ethanol was included in the crosslinking solution, and the average diameter within 1 ± 0.024 μm for 11 KV, 75% ethanol with 11% CaCl₂, and flow of 0.97 mL/h.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414949PMC
http://dx.doi.org/10.3390/polym10020108DOI Listing

Publication Analysis

Top Keywords

composite microbeads
8
size dispersion
8
aggregation coalescence
8
particle size
8
crosslinking solution
8
electron microscopy
8
electrosprayed core⁻shell
4
core⁻shell composite
4
microbeads based
4
based pectin-arabinoxylans
4

Similar Publications

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

The impact of grinding on particle size, thermal behaviour, and sintering ability of yttrium aluminate glass microspheres with eutectic composition (76.8 mol % AlO and 23.2 mol % YO) was studied.

View Article and Find Full Text PDF

Penguin feather-inspired flexible aerogel composite films featuring ultra-low thermal conductivity and dielectric constant.

Mater Horiz

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, People's Republic of China.

Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films.

View Article and Find Full Text PDF

Antioxidant effects of Gastrodia elata polysaccharide-based hydrogels loaded with puerarin/gelatin microspheres for D-galactose-induced aging-skin wound healing.

Int J Biol Macromol

January 2025

College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China. Electronic address:

The healing of wounds in aging skin is a challenging issue that has not been thoroughly studied. Composite hydrogels made from natural polysaccharides have shown potential as dressings for various types of wounds. In this study, we prepared a polysaccharide-based composite hydrogel to provide a new strategy for treating aging skin wounds.

View Article and Find Full Text PDF

Self-adaptive dielectrics (SADs), with the characteristics of rapid charge dissipation in electric field distortion, is regarded as the future material for package insulation of advanced electronic devices. The current landscape of SADs is incapable to achieve tunable nonlinear electrical conductivity and threshold field strength due to the inherent Schottky barrier, significantly limiting the application scenarios of SADs. Here, a strategy is reported to construct a stepped Schottky barrier through virus-like structures, which are composed of subminiature metal particles and semiconductor microspheres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!