In this review, we provide a general and clear overview about the different alternatives reported to fabricate a myriad of polypeptide architectures based on the ring-opening polymerization of -carbonyanhydrides (ROP NCAs). First of all, the strategies for the preparation of NCA monomers directly from natural occurring or from modified amino acids are analyzed. The synthetic alternatives to prepare non-functionalized and functionalized NCAs are presented. Protection/deprotection protocols, as well as other functionalization chemistries are discussed in this section. Later on, the mechanisms involved in the ROP NCA polymerization, as well as the strategies developed to reduce the eventually occurring side reactions are presented. Finally, a general overview of the synthetic strategies described in the literature to fabricate different polypeptide architectures is provided. This part of the review is organized depending on the complexity of the macromolecular topology prepared. Therefore, linear homopolypeptides, random and block copolypeptides are described first. The next sections include cyclic and branched polymers such as star polypeptides, polymer brushes and highly branched structures including arborescent or dendrigraft structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418556 | PMC |
http://dx.doi.org/10.3390/polym9110551 | DOI Listing |
Dalton Trans
January 2025
Institut für Anorganische Chemie. Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
Compared to aziridines, azaphosphiridines, which formally result from the replacement of a carbon atom by phosphorus, have been much less studied. In this work, accurate values for one of the most prominent properties, the ring strain energy (RSE), have been theoretically examined for a wide range of azaphosphiridine derivatives. Strongly related aspects of interest for developing the use of azaphosphiridines in heteroatom and polymer chemistry are ring opening reactions and polymerisations, the latter facilitated by their significantly high RSE.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany.
Aromatic diimides such as naphthalene diimide (NDI) and pyromellitic diimide (MDI) are important building blocks for organic electrode materials. They feature a two-electron redox mechanism that allows for energy storage. Due to the smaller size of MDI compared to NDI its theoretical capacity is higher.
View Article and Find Full Text PDFDes Monomers Polym
January 2025
Department of Physics Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia.
Polydimethylsiloxane (PDMS) is a polymer that can be used as a vitreous substitute. To fulfill the need for PDMS on a large scale, synthesis of PDMS in a large number is also needed. Therefore, intensive research is needed to produce PDMS in large quantities.
View Article and Find Full Text PDFChemSusChem
January 2025
VITO NV, Match Unit, BELGIUM.
The growing pursuit of carbon circularity in material fabrication has led to the increased use of recycled and biobased resources, especially in epoxy resin systems. Fossil-based bisphenols are being replaced with recycled bisphenol A (r-BPA) and lignin derivatives, both derived from previous processes. In this study, r-BPA was chemically recycled from end-of-life televisions, then converted into r-DGEBA and r-DAGBA through glycidylation and acrylic acid ring-opening.
View Article and Find Full Text PDFAdv Mater
January 2025
Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
The evolution of display technologies is rapidly transitioning from traditional screens to advanced augmented reality (AR)/virtual reality (VR) and wearable devices, where quantum dots (QDs) serve as crucial pure-color emitters. While solution processing efficiently forms QD solids, challenges emerge in subsequent stages, such as layer deposition, etching, and solvent immersion. These issues become especially pronounced when developing diverse form factors, necessitating innovative patterning methods that are both reversible and sustainable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!