The present work aimed at developing fully green composites from renewable materials, i.e., acrylated epoxidized soybean oil (AESO) and microcrystalline cellulose (MCC) by a solution casting method. The reinforcing effect of MCC on AESO resins was optimized by adjusting MCC loading from 20 to 40 wt % in terms of physical, mechanical, and thermal properties as well as water absorption of the resulting MCC/AESO composites. The interaction between MCC and AESO was characterized by Fourier transform infrared (FTIR) analysis, which revealed possible hydrogen bonds between the ⁻OH groups of MCC along with the polar components of AESO including C=O, ⁻OH, and epoxy groups. This was further evidenced by a benign interfacial adhesion between MCC and AESO resins as revealed by scanning electron microscope (SEM) analysis. The incorporation of MCC into AESO resins significantly increased the density, hardness, flexural strength, and flexural modulus of the MCC/AESO composites, indicative of a significant reinforcing effect of MCC on AESO resins. The composite with 30 wt % MCC obtained the highest physical and mechanical properties due to the good dispersion and interfacial interaction between MCC and AESO matrix; the density, hardness, flexural strength, and flexural modulus of the composite were 15.7%, 25.0%, 57.2%, and 129.7% higher than those of pure AESO resin, respectively. However, the water resistance at room temperature and 100 °C of the composites were dramatically decreased due to the inherent hydrophilicity of MCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418966 | PMC |
http://dx.doi.org/10.3390/polym9100541 | DOI Listing |
Polymers (Basel)
May 2022
Department of Applied Science and Technology, Politecnico di Torino, Local INSTM Unit, Viale T. Michel 5, Provincia di Alessandria, 15121 Alessandria, Italy.
Stereolithography (SLA), one of the seven different 3D printing technologies, uses photosensitive resins to create high-resolution parts. Although SLA offers many advantages for medical applications, the lack of biocompatible and biobased resins limits its utilization. Thus, the development of new materials is essential.
View Article and Find Full Text PDFPolymers (Basel)
October 2017
College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
The present work aimed at developing fully green composites from renewable materials, i.e., acrylated epoxidized soybean oil (AESO) and microcrystalline cellulose (MCC) by a solution casting method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!