A new microencapsulated flame retardant containing melamine polyphosphate (MPP) and 4,4'-oxydianiline-formaldehyde (OF) resin as the core and shell materials, respectively, was synthesized by in situ polymerization. Si NMR was used to measure the condensation density of polyurethane containing silicon compound (Si-PU). The structures and properties of the microencapsulated melamine polyphosphate (OFMPP) were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy and water solubility. Thermal behavior of the OFMPP was systematically analyzed through thermogravimetric analysis. Flame retardance tests such as the limiting oxygen index and UL-94 were employed to evaluate the effect of composition variation on the MPP and OFMPP in polyurethane composites. The results indicated that the microencapsulation of MPP with the OF resin improved hydrophobicity and that the flame retardance of the Si-PU/OFMPP composite (limiting oxygen index, LOI = 32%) was higher than that of the Si-PU/MPP composite (LOI = 27%) at the same additive loading (30 wt %).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418742 | PMC |
http://dx.doi.org/10.3390/polym9090407 | DOI Listing |
Int J Biol Macromol
January 2025
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), College of Chemistry, Sichuan University, Chengdu 610064, China.
The development of bio-based flame retardants has garnered significant attention, however, significant challenges remain in achieving efficient flame retardancy and eco-friendly preparation methods. Herein, we propose a facile, atomic-efficient, and eco-friendly strategy for synthesizing a trinity chitosan-based flame retardant, phosphite-protonated chitosan (PCS). The chemical structure was systematically analyzed and the impact of varying degrees of protonation on the dissolution behavior and rheological properties were investigated.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Fisheries College, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China. Electronic address:
The toxicity of tris (2-butoxyethyl) phosphate (TBOEP) has been extensively investigated because of its prevalence in the environment. Nevertheless, the risk factors associated with maternal transmission are poorly understood. In this study, sexually mature female zebrafish were treated with TBOEP (0, 20, 100, and 500 μg/L) for 30 days and were mated with unexposed males.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
Chitosan (CS) based sponge shows important potential applications in adsorption, filtration, sensing, etc., which often requires good deformation-recovery ability that is usually achieved under the help of silane elastomers. Herein, a simple but innovative strategy was proposed that only bamboo activated carbon (BAC) was employed as the reinforcer to construct highly elastic phosphorylated chitosan (P-CS) sponge with through-hole structure like layer-support by freeze drying.
View Article and Find Full Text PDFWater Res
December 2024
Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.
Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.
View Article and Find Full Text PDFFront Chem
December 2024
School of the Environment and Safety Engineering (School of the Emergency Management), Jiangsu University, Zhenjiang, China.
In this paper, we report a novel method for enhancing the flame retardancy of wood-based paper by utilizing natural biomaterials. The research constructed a bilayered structure coating on paper fiber surfaces, incorporating mixed starch (MS), adenosine triphosphate (ATP), and phytic acid (PA) as natural bio-based flame retardants. The structural configuration of the coating comprises MS/ATP and MS/PA, which were sequentially assembled as bottom and top parts, respectively, through pneumatic spraying.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!